Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(bayesplay)
## -----------------------------------------------------------------------------
data_mod <- likelihood(family = "normal", mean = 5.5, sd = 32.35)
## -----------------------------------------------------------------------------
h0_mod <- prior(family = "point", point = 0)
## -----------------------------------------------------------------------------
h1_mod <- prior(family = "normal", mean = 0, sd = 13.3, range = c(0, Inf))
## -----------------------------------------------------------------------------
m1 <- integral(data_mod * h1_mod)
m0 <- integral(data_mod * h0_mod)
## -----------------------------------------------------------------------------
bf <- m1 / m0
bf
## -----------------------------------------------------------------------------
data_mod <- likelihood(family = "normal", mean = 5, sd = 10)
## -----------------------------------------------------------------------------
h1_mod <- prior(family = "uniform", min = 0, max = 20)
## -----------------------------------------------------------------------------
h0_mod <- prior(family = "point", point = 0)
## -----------------------------------------------------------------------------
bf <- integral(data_mod * h1_mod) / integral(data_mod * h0_mod)
bf
## -----------------------------------------------------------------------------
d <- 2.03 / sqrt(80) # convert t to d
data_model <- likelihood(family = "noncentral_d", d, 80)
h0_mod <- prior(family = "point", point = 0)
h1_mod <- prior(family = "cauchy", scale = 1)
bf <- integral(data_model * h0_mod) / integral(data_model * h1_mod)
bf
## -----------------------------------------------------------------------------
d <- 2.03 / sqrt(80) # convert t to d
data_model <- likelihood(family = "noncentral_d", d, 80)
h0_mod <- prior(family = "point", point = 0)
h1_mod <- prior(family = "normal", mean = 0, sd = 1)
bf <- integral(data_model * h0_mod) / integral(data_model * h1_mod)
bf
## -----------------------------------------------------------------------------
data_model <- likelihood(family = "noncentral_t", 2.03, 79)
h0_mod <- prior(family = "point", point = 0)
h1_mod <- prior(family = "cauchy", location = 0, scale = 1 * sqrt(80))
bf <- integral(data_model * h0_mod) / integral(data_model * h1_mod)
bf
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.