Nothing
context("Plots")
test_that("Prior plots", {
skip_on_cran()
# Half normal prior
half_normal <- prior("normal", 0L, 45L, range = c(0L, Inf))
half_normal_plot <- plot(half_normal)
vdiffr::expect_doppelganger("half normal prior", half_normal_plot)
normal <- prior("normal", 0L, 45L)
normal_plot <- plot(normal)
vdiffr::expect_doppelganger("normal prior", normal_plot)
uniform <- prior("uniform", -10L, 10L)
uniform_plot <- plot(uniform)
vdiffr::expect_doppelganger("uniform prior", uniform_plot)
point <- prior("point", 2L)
point_plot <- plot(point)
vdiffr::expect_doppelganger("point prior", point_plot)
# likelihoods
binomial_likelihood <- plot(likelihood("binomial", 2L, 10L))
vdiffr::expect_doppelganger("binomial likelihood", binomial_likelihood)
normal_likelihood <- plot(likelihood("normal", 0L, 1L))
vdiffr::expect_doppelganger("normal likelihood", normal_likelihood)
# visual comparison discrete
prior_model <- prior(family = "beta", 10L, 10L)
data_model <- likelihood(family = "binomial", 2L, 10L)
null_prior <- prior("point", 0.5)
m0 <- data_model * null_prior
m1 <- data_model * prior_model
comparison_plot1 <- visual_compare(m0, m1)
vdiffr::expect_doppelganger("discrete visual compare", comparison_plot1)
comparison_plot1a <- visual_compare(m0, m1, ratio = TRUE)
vdiffr::expect_doppelganger("discrete visual compare", comparison_plot1)
# visual comparison continuous
prior_model <- prior(family = "normal", 0L, 13.13)
data_model <- likelihood(family = "normal", 5.5, 32.35)
null_prior <- prior("point", 0L)
m0 <- data_model * null_prior
m1 <- data_model * prior_model
comparison_plot2 <- visual_compare(m0, m1)
vdiffr::expect_doppelganger("continuous visual compare", comparison_plot2)
# ratio plot continuous
prior_model <- prior("normal", 0L, 10L)
data_model <- likelihood("normal", 5L, 5L)
null_prior <- prior("point", 0L)
m0 <- data_model * null_prior
m1 <- data_model * prior_model
ratio_plot1 <- visual_compare(m0, m1, ratio = TRUE)
vdiffr::expect_doppelganger("continuous ratio plot", ratio_plot1)
# ratio plot discrete
prior_model <- prior(family = "beta", 10L, 10L)
data_model <- likelihood(family = "binomial", 2L, 10L)
null_prior <- prior("point", 0.5)
m0 <- data_model * null_prior
m1 <- data_model * prior_model
ratio_plot2 <- visual_compare(m0, m1, ratio = TRUE)
vdiffr::expect_doppelganger("discrete ratio plot", ratio_plot2)
# beta-binom
prior_model <- prior(family = "beta", 10L, 10L)
data_model <- likelihood(family = "binomial", 2L, 10L)
m1 <- data_model * prior_model
prior_posterior1 <- plot(extract_posterior(m1), add_prior = TRUE)
posterior1 <- plot(extract_posterior(m1))
prod_plot <- plot(m1)
vdiffr::expect_doppelganger("beta-binom pp", prior_posterior1)
vdiffr::expect_doppelganger("beta-binom posterior", posterior1)
vdiffr::expect_doppelganger("beta-binom weighted likelihood", prod_plot)
# normal-normal
prior_model <- prior(family = "normal", 0L, 10L)
data_model <- likelihood(family = "normal", 5L, 5L)
m1 <- data_model * prior_model
prior_posterior2 <- plot(extract_posterior(m1), add_prior = TRUE)
posterior1 <- plot(extract_posterior(m1))
prod_plot <- plot(m1)
vdiffr::expect_doppelganger("normal-normal pp", prior_posterior2)
vdiffr::expect_doppelganger("normal posterior", posterior1)
vdiffr::expect_doppelganger("normal weighted likelihood", prod_plot)
# # point posterior plot
data_mod <- likelihood(family = "normal", mean = 0L, sd = 1L)
h0_mod <- prior(family = "point", point = 0L)
point_posterior <- plot(extract_posterior(data_mod * h0_mod))
point_posteriora <- plot(extract_posterior(data_mod * h0_mod),
add_prior = TRUE)
vdiffr::expect_doppelganger("point_posterior", point_posterior)
vdiffr::expect_doppelganger("point_posterior_prior", point_posteriora)
# prediction plot
continuous_prediction <- extract_predictions(
prior("normal", 0L, 10L) * likelihood("normal", 2L, 10L)
)
continuous_prediction_plot <- plot(continuous_prediction)
continuous_prediction_plot
discrete_prediction <- extract_predictions(
prior("beta", 1L, 1L) * likelihood("binomial", 2L, 10L)
)
discrete_prediction_plot <- plot(discrete_prediction)
vdiffr::expect_doppelganger(
"continuous prediction",
continuous_prediction_plot
)
vdiffr::expect_doppelganger(
"discrete prediction",
discrete_prediction_plot
)
# cauchy-normal-d2 prediction plot
data_model <- likelihood(family = "noncentral_d2", d = 0.5,
n1 = 10L, n2 = 10L)
# define alternative prior
alt_prior <- prior(family = "normal", mean = 0L, sd = 1L)
# define null prior
null_prior <- prior(family = "cauchy", location = 0L, scale = 1L)
# weight likelihood by prior
m1 <- data_model * alt_prior
m0 <- data_model * null_prior
m1_predictions <- extract_predictions(m1)
m0_predictions <- extract_predictions(m0)
cauchy_normal_plot <- visual_compare(m1_predictions, m0_predictions)
vdiffr::expect_doppelganger(
"cauchy-normal-d2 prediction",
cauchy_normal_plot
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.