bayess: Bayesian Essentials with R

bayess contains a collection of functions that allows the reenactment of the R programs used in the book "Bayesian Essentials with R" (revision of "Bayesian Core") without further programming. R code being available as well, they can be modified by the user to conduct one's own simulations.

Install the latest version of this package by entering the following in R:
AuthorChristian P. Robert, Universite Paris Dauphine, and Jean-Michel Marin, Universite Montpellier 2
Date of publication2013-02-09 22:07:40
MaintainerChristian P. Robert <>

View on CRAN

Man pages

ardipper: Accept-reject algorithm for the open population...

ARllog: log-likelihood associated with an AR(p) model defined either...

ARmh: Metropolis-Hastings evaluation of the posterior associated...

bank: bank dataset (Chapter 4)

BayesReg: Bayesian linear regression output

caterpillar: Pine processionary caterpillar dataset

datha: Non-standardised Licence dataset

Dnadataset: DNA sequence of an HIV genome

eurodip: European Dipper dataset

Eurostoxx50: Eurostoxx50 exerpt dataset

gibbs: Gibbs sampler and Chib's evidence approximation for a generic...

gibbs2: Gibbs sampler for the two-stage open population...

gibbs3: Gibbs sampling for the Arnason-Schwarz capture-recapture...

gibbsmean: Gibbs sampler on a mixture posterior distribution with...

gibbsnorm: Gibbs sampler for a generic mixture posterior distribution

hmflatlogit: Metropolis-Hastings for the logit model under a flat prior

hmflatloglin: Metropolis-Hastings for the log-linear model under a flat...

hmflatprobit: Metropolis-Hastings for the probit model under a flat prior

hmhmm: Estimation of a hidden Markov model with 2 hidden and 4...

hmmeantemp: Metropolis-Hastings with tempering steps for the mean mixture...

hmnoinflogit: Metropolis-Hastings for the logit model under a...

hmnoinfloglin: Metropolis-Hastings for the log-linear model under a...

hmnoinfprobit: Metropolis-Hastings for the probit model under a...

isinghm: Metropolis-Hastings for the Ising model

isingibbs: Gibbs sampler for the Ising model

Laiche: Laiche dataset

logitll: Log-likelihood of the logit model

logitnoinflpost: Log of the posterior distribution for the probit model under...

loglinll: Log of the likelihood of the log-linear model

loglinnoinflpost: Log of the posterior density for the log-linear model under a...

MAllog: log-likelihood associated with an MA(p) model

MAmh: Metropolis-Hastings evaluation of the posterior associated...

Menteith: Grey-level image of the Lake of Menteith

ModChoBayesReg: Bayesian model choice procedure for the linear model

normaldata: Normal dataset

pbino: Posterior expectation for the binomial capture-recapture...

pcapture: Posterior probabilities for the multiple stage...

pdarroch: Posterior probabilities for the Darroch model

plotmix: Graphical representation of a normal mixture log-likelihood

pottsgibbs: Gibbs sampler for the Potts model

pottshm: Metropolis-Hastings sampler for a Potts model with 'ncol'...

probet: Coverage of the interval (a,b) by the Beta cdf

probitll: Log-likelihood of the probit model

probitnoinflpost: Log of the posterior density for the probit model under a...

rdirichlet: Random generator for the Dirichlet distribution

reconstruct: Image reconstruction for the Potts model with six classes

solbeta: Recursive resolution of beta prior calibration

sumising: Approximation by path sampling of the normalising constant...

thresh: Bound for the accept-reject algorithm in Chapter 5

truncnorm: Random simulator for the truncated normal distribution

xneig4: Number of neighbours with the same colour


ardipper Man page
ARllog Man page
ARmh Man page
bank Man page
BayesReg Man page
caterpillar Man page
datha Man page
Dnadataset Man page
eurodip Man page
Eurostoxx50 Man page
gibbs Man page
gibbscap1 Man page
gibbscap2 Man page
gibbsmean Man page
gibbsnorm Man page
hmflatlogit Man page
hmflatloglin Man page
hmflatprobit Man page
hmhmm Man page
hmmeantemp Man page
hmnoinflogit Man page
hmnoinfloglin Man page
hmnoinfprobit Man page
isinghm Man page
isingibbs Man page
Laichedata Man page
likej Man page
logitll Man page
logitnoinflpost Man page
loglinll Man page
loglinnoinflpost Man page
MAllog Man page
MAmh Man page
Menteith Man page
ModChoBayesReg Man page
normaldata Man page
pbino Man page
pcapture Man page
pdarroch Man page
plotmix Man page
pottsgibbs Man page
pottshm Man page
probet Man page
probitll Man page
probitnoinflpost Man page
rdirichlet Man page
reconstruct Man page
solbeta Man page
sumising Man page
thresh Man page
truncnorm Man page
xneig4 Man page


demo/Chapter.7.R demo/Chapter.4.R demo/Chapter.3.R demo/Chapter.2.R demo/Chapter.6.R demo/Chapter.8.R demo/Chapter.1.R
man/hmflatlogit.Rd man/hmnoinfprobit.Rd man/logitnoinflpost.Rd man/hmflatprobit.Rd man/gibbs2.Rd man/reconstruct.Rd man/rdirichlet.Rd man/sumising.Rd man/Dnadataset.Rd man/caterpillar.Rd man/probitnoinflpost.Rd man/pottsgibbs.Rd man/hmnoinflogit.Rd man/bank.Rd man/thresh.Rd man/isinghm.Rd man/probet.Rd man/hmmeantemp.Rd man/gibbsnorm.Rd man/plotmix.Rd man/Eurostoxx50.Rd man/Laiche.Rd man/normaldata.Rd man/isingibbs.Rd man/solbeta.Rd man/datha.Rd man/loglinnoinflpost.Rd man/truncnorm.Rd man/probitll.Rd man/pbino.Rd man/hmhmm.Rd man/hmnoinfloglin.Rd man/gibbs.Rd man/ModChoBayesReg.Rd man/pottshm.Rd man/ardipper.Rd man/ARllog.Rd man/loglinll.Rd man/gibbs3.Rd man/hmflatloglin.Rd man/logitll.Rd man/eurodip.Rd man/pdarroch.Rd man/pcapture.Rd man/MAllog.Rd man/Menteith.Rd man/xneig4.Rd man/BayesReg.Rd man/gibbsmean.Rd man/ARmh.Rd man/MAmh.Rd
R/sumising.R R/pbino.R R/ARllog.R R/loglinnoinflpost.R R/BayesReg.R R/pottsgibbs.R R/truncnorm.R R/hmnoinfloglin.R R/gibbsmean.R R/logitnoinflpost.R R/MAmh.R R/ModChoBayesReg.R R/gibbscap1.R R/probitll.R R/thresh.R R/logitll.R R/gibbs.R R/hmflatprobit.R R/gibbsnorm.R R/probitnoinflpost.R R/MAllog.R R/hmhmm.R R/rdirichlet.R R/pcapture.R R/hmflatloglin.R R/reconstruct.R R/plotmix.R R/ARmh.R R/isinghm.R R/solbeta.R R/hmnoinfprobit.R R/pottshm.R R/ardipper.R R/probet.R R/pdarroch.R R/hmmeantemp.R R/hmflatlogit.R R/hmnoinflogit.R R/gibbscap2.R R/xneig4.R R/isingibbs.R R/loglinll.R

Questions? Problems? Suggestions? or email at

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.