hmnoinflogit: Metropolis-Hastings for the logit model under a...

Description Usage Arguments Value See Also Examples

View source: R/hmnoinflogit.R

Description

This function runs a Metropolis-Hastings algorithm that produces a sample from the posterior distribution for the logit model (Chapter 4) coefficient beta associated with a noninformative prior defined in the book.

Usage

1
hmnoinflogit(niter, y, X, scale)

Arguments

niter

number of iterations

y

binary response variable

X

matrix of covariates with the same number of rows as y

scale

scale of the random walk

Value

sample of beta's as a matrix of size niter x p, where p is the number of covariates

See Also

hmnoinfprobit

Examples

1
2
3
4
5
6
7
8
9
data(bank)
bank=as.matrix(bank)
y=bank[,5]
X=bank[,1:4]
noinflogit=hmnoinflogit(1000,y,X,1)
par(mfrow=c(1,3),mar=1+c(1.5,1.5,1.5,1.5))
plot(noinflogit[,1],type="l",xlab="Iterations",ylab=expression(beta[1]))
hist(noinflogit[101:1000,1],nclass=50,prob=TRUE,main="",xlab=expression(beta[1]))
acf(noinflogit[101:1000,1],lag=10,main="",ylab="Autocorrelation",ci=FALSE)

bayess documentation built on May 29, 2017, 9:39 p.m.

Related to hmnoinflogit in bayess...