| mlr_optimizers_async_grid_search | R Documentation |
OptimizerAsyncGridSearch class that implements a grid search.
The grid is constructed as a Cartesian product over discretized values per parameter, see paradox::generate_design_grid().
The points of the grid are evaluated in a random order.
This Optimizer can be instantiated via the dictionary
mlr_optimizers or with the associated sugar function opt():
mlr_optimizers$get("async_grid_search")
opt("async_grid_search")
batch_sizeinteger(1)
Maximum number of points to try in a batch.
bbotk::Optimizer -> bbotk::OptimizerAsync -> OptimizerAsyncGridSearch
new()Creates a new instance of this R6 class.
OptimizerAsyncGridSearch$new()
optimize()Starts the asynchronous optimization.
OptimizerAsyncGridSearch$optimize(inst)
inst(OptimInstance).
data.table::data.table.
clone()The objects of this class are cloneable with this method.
OptimizerAsyncGridSearch$clone(deep = FALSE)
deepWhether to make a deep clone.
Bergstra J, Bengio Y (2012). “Random Search for Hyper-Parameter Optimization.” Journal of Machine Learning Research, 13(10), 281–305. https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html.
# example only runs if a Redis server is available
if (mlr3misc::require_namespaces(c("rush", "redux", "mirai"), quietly = TRUE) &&
redux::redis_available()) {
# define the objective function
fun = function(xs) {
list(y = - (xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + 10)
}
# set domain
domain = ps(
x1 = p_dbl(-10, 10),
x2 = p_dbl(-5, 5)
)
# set codomain
codomain = ps(
y = p_dbl(tags = "maximize")
)
# create objective
objective = ObjectiveRFun$new(
fun = fun,
domain = domain,
codomain = codomain,
properties = "deterministic"
)
# start workers
rush::rush_plan(worker_type = "remote")
mirai::daemons(1)
# initialize instance
instance = oi_async(
objective = objective,
terminator = trm("evals", n_evals = 20)
)
# load optimizer
optimizer = opt("async_grid_search", resolution = 10)
# trigger optimization
optimizer$optimize(instance)
# all evaluated configurations
instance$archive
# best performing configuration
instance$archive$best()
# covert to data.table
as.data.table(instance$archive)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.