| mlr_optimizers_gensa | R Documentation |
OptimizerBatchGenSA class that implements generalized simulated annealing.
Calls GenSA::GenSA() from package GenSA.
This Optimizer can be instantiated via the dictionary
mlr_optimizers or with the associated sugar function opt():
mlr_optimizers$get("gensa")
opt("gensa")
parnumeric()
Initial parameter values.
Default is NULL, in which case, default values will be generated automatically.
start_valuescharacter(1)
Create "random" start values or based on "center" of search space?
In the latter case, it is the center of the parameters before a trafo is applied.
By default, nloptr will generate start values automatically.
Custom start values can be passed via the par parameter.
For the meaning of the control parameters, see GenSA::GenSA().
Note that GenSA::GenSA() uses smooth = TRUE as a default.
In the case of using this optimizer for Hyperparameter Optimization you may want to set smooth = FALSE.
The algorithm can terminated with all Terminators. Additionally, the following internal termination parameters can be used:
maxitinteger(1)
Maximum number of iterations.
Original default is 5000.
Overwritten with .Machine$integer.max.
threshold.stopnumeric(1)
Threshold stop.
Deactivated with NULL.
Default is NULL.
nb.stop.improvementinteger(1)
Number of stop improvement.
Deactivated with -1L.
Default is -1L.
max.callinteger(1)
Maximum number of calls.
Original default is 1e7.
Overwritten with .Machine$integer.max.
max.timeinteger(1)
Maximum time.
Deactivate with NULL.
Default is NULL.
$optimize() supports progress bars via the package progressr
combined with a Terminator. Simply wrap the function in
progressr::with_progress() to enable them. We recommend to use package
progress as backend; enable with progressr::handlers("progress").
bbotk::Optimizer -> bbotk::OptimizerBatch -> OptimizerBatchGenSA
new()Creates a new instance of this R6 class.
OptimizerBatchGenSA$new()
clone()The objects of this class are cloneable with this method.
OptimizerBatchGenSA$clone(deep = FALSE)
deepWhether to make a deep clone.
Tsallis C, Stariolo DA (1996). “Generalized simulated annealing.” Physica A: Statistical Mechanics and its Applications, 233(1-2), 395–406. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/s0378-4371(96)00271-3")}.
Xiang Y, Gubian S, Suomela B, Hoeng J (2013). “Generalized Simulated Annealing for Global Optimization: The GenSA Package.” The R Journal, 5(1), 13. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.32614/rj-2013-002")}.
# example only runs if GenSA is available
if (mlr3misc::require_namespaces("GenSA", quietly = TRUE)) {
# define the objective function
fun = function(xs) {
list(y = - (xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + 10)
}
# set domain
domain = ps(
x1 = p_dbl(-10, 10),
x2 = p_dbl(-5, 5)
)
# set codomain
codomain = ps(
y = p_dbl(tags = "maximize")
)
# create objective
objective = ObjectiveRFun$new(
fun = fun,
domain = domain,
codomain = codomain,
properties = "deterministic"
)
# initialize instance
instance = oi(
objective = objective,
terminator = trm("evals", n_evals = 20)
)
# load optimizer
optimizer = opt("gensa")
# trigger optimization
optimizer$optimize(instance)
# all evaluated configurations
instance$archive
# best performing configuration
instance$result
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.