View source: R/bcvusMAR-asyVAR.R
asy_var_vus | R Documentation |
asy_var_vus
computes the asymptotic variance of full data (FULL) and bias-corrected estimators (i.e. full imputation, mean score imputation, inverse probability weighting, semiparametric efficient and K nearest neighbor) of VUS.
asy_var_vus(
obj_vus,
diag_test,
dise_vec,
veri_stat = NULL,
rho_est = NULL,
pi_est = NULL,
boot = FALSE,
n_boot = 250,
parallel = FALSE,
ncpus = ifelse(parallel, detectCores()/2, NULL)
)
obj_vus |
a result of a call to |
diag_test |
a numeric vector containing the diagnostic test values. |
dise_vec |
a n * 3 binary matrix with three columns, corresponding to the three classes of the disease status. In row i, 1 in column j indicates that the i-th subject belongs to class j, with j = 1, 2, 3. A row of |
veri_stat |
a binary vector containing the verification status (1 verified, 0 not verified). |
rho_est |
a result of a call to |
pi_est |
a result of a call to |
boot |
a logical value. Default = |
n_boot |
the number of bootstrap replicates, which is used for FULL or KNN estimators, or option |
parallel |
a logical value. If |
ncpus |
number of processes to be used in parallel computing. Default is half of available cores. |
For the FULL estimator, a bootstrap resampling process or Jackknife approach is used to estimate the asymptotic variance, whereas, a bootstrap resampling process is employed to obtain the asymptotic variance of K nearest neighbor estimator.
For the full imputation, mean score imputation, inverse probability weighting and semiparametric efficient estimators of VUS, the asymptotic variances are computed by using the explicit form. Furthermore, a bootstrap procedure is also available, useful in case of small sample sizes.
asy_var_vus
returns a estimated value of the asymptotic variance.
To Duc, K., Chiogna, M. and Adimari, G. (2020) Nonparametric estimation of ROC surfaces in presence of verification bias. REVSTAT-Statistical Journal. 18, 5, 697–720.
To Duc, K., Chiogna, M. and Adimari, G. (2016) Bias-corrected methods for estimating the receiver operating characteristic surface of continuous diagnostic tests. Electronic Journal of Statistics, 10, 3063-3113.
Guangming, P., Xiping, W. and Wang, Z. (2013) Non-parameteric statistical inference for $P(X < Y < Z)$. Sankhya A, 75, 1, 118-138.
data(EOC)
# Preparing the missing disease status
dise_na <- pre_data(EOC$D, EOC$CA125)
dise_vec_na <- dise_na$dise_vec
dise_fact_na <- dise_na$dise
rho_out <- rho_mlogit(dise_fact_na ~ CA125 + CA153 + Age, data = EOC,
test = TRUE)
vus_fi <- vus_mar("fi", diag_test = EOC$CA125, dise_vec = dise_vec_na,
veri_stat = EOC$V, rho_est = rho_out, ci = FALSE)
var_fi <- asy_var_vus(vus_fi, diag_test = EOC$CA125, dise_vec = dise_vec_na,
veri_stat = EOC$V, rho_est = rho_out)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.