Nothing
#' Summarize the Result of an SVD Cross-Validation
#'
#' Summarize the result of \code{\link{cv.svd.gabriel}} or
#' \code{\link{cv.svd.wold}}.
#'
#' Print a table of the estimated prediction errors and the standard errors of
#' the estimate. Put an asterisk (\code{*}) next to the minimum and a plus
#' (\code{+}) next to the "one standard error rule" choice.
#'
#' @param object the result of a \code{\link{cv.svd.gabriel}} or
#' \code{\link{cv.svd.wold}} computation.
#' @param \dots additional arguments to \code{summary}.
#' @return \item{nfolds }{the number of cross-validation folds} \item{maxrank
#' }{the maximum rank for which prediction error is estimated.} \item{msep.mean
#' }{the average mean square error of prediction (MSEP) across all folds for
#' ranks 0, 1, ..., \code{maxrank}.} \item{msep.se }{the standard errors of the
#' \code{msep.mean} estimates.} \item{rank.best }{the rank with the minimum
#' \code{msep.mean} value.} \item{rank.1se }{the smallest rank within one
#' standard error of the minimum \code{msep.mean} value.}
#' @author Patrick O. Perry
#' @seealso \code{\link{cv.svd.gabriel}}, \code{\link{cv.svd.wold}},
#' \code{\link{plot.cvsvd}} \code{\link{print.cvsvd}}
#' @export
summary.cvsvd <- function( object, ... ) {
msep <- object$msep
maxrank <- object$maxrank
K <- nrow( msep )
rank <- seq( from=0, to=maxrank, by=1 )
msep.mean <- apply( msep, 2, mean )
msep.se <- apply( msep, 2, sd ) / sqrt( K )
rank.best <- which.min( msep.mean ) - 1
rank.1se <- min( which( msep.mean
<= msep.mean[ rank.best+1 ]
+ msep.se[ rank.best+1 ] ) ) - 1
names( rank.best ) <- NULL
list( nfolds=K, maxrank=maxrank,
msep.mean=msep.mean, msep.se=msep.se,
rank.best=rank.best, rank.1se=rank.1se )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.