Nothing
#************************************************************************
# Kakizawa Bernstein Polynomial approximation as described in
# Kakizawa's 2004 paper:
#
# @article{Kakizawa04,
# title = {Bernsteins polynomial probability density estimation},
# author = {Kakizawa, Y.},
# journal = {Journal of Nonparametric Statistics},
# year = {2004},
# volume = {16},
# number = {5},
# pages = {709-729}
# }
#
#************************************************************************
setClass(
Class = "KakizawaB1",
representation = representation(
gamma = "numeric",
densityEstimator = "BoundedDensity"),
contains = "BernsteinPolynomials"
)
setValidity(
Class = "KakizawaB1",
method = function(object) {
if (length(object@dataPoints) == 0){
stop("A data set with at least one point is needed")
}else if (any(object@dataPoints < 0) || any(object@dataPoints > 1)){
stop("Data points outside the bounds [lower.limit,upper.limit]")
}else if (object@m < 0){
stop("The order for Bernstein estimator (m) must be > 0")
}else{}
return(TRUE)
}
)
setGeneric (
name = "getgamma",
def = function(.Object){standardGeneric("getgamma")}
)
setMethod(
f = "getgamma",
signature = "KakizawaB1",
definition = function(.Object) {
return(.Object@gamma)
}
)
setGeneric (
name = "getdensityEstimator",
def = function(.Object){standardGeneric("getdensityEstimator")}
)
setMethod(
f = "getdensityEstimator",
signature = "KakizawaB1",
definition = function(.Object) {
return(class(.Object@DensityEstimator))
}
)
setMethod(
f = "density",
signature = "KakizawaB1",
definition = function(x,values,scaled = FALSE) {
.Object <- x
x <- values
isMatrix.x <- is.matrix(x)
#dims = [nrows,ncols]
dims <- dim(x)
if(!scaled){
# scale the data to the 0-1 interval
x <- getScaledPoints(.Object,x)
}
# if any value in x is lower than 0 or grater than 1 its density is 0
numDataPoints <- length(x)
index.nozero <- which(x>=0 & x <=1)
x <- x[index.nozero]
if(length(x) == 0){ # all elements in x were out of bound
return(rep(0,numDataPoints - length(index.nozero)))
}
# x is considered as a vector even if it is a matrix(elements taken by columns)
x.indices <- rep(0,times = length(x))
x.densities <- numeric(0)
if(length(.Object@densityCache) == length(.Object@dataPointsCache)){
# if there are density values calculated in the cache, first we look
# at the cache to check whether some of the values in x have been already calculated
x.indices <- match(x, .Object@dataPointsCache, nomatch=0)
if(any(x.indices > 0)){
# the density of some of the points are already calculated in the cache
x.densities[x.indices != 0] <- .Object@densityCache[x.indices[x.indices!=0]]
}else{}
}else{}
# the data poins whose densities are not calculated in the cache
x.new <- x[x.indices == 0]
x.new.length <- length(x.new)
if(x.new.length > 0){
# There are densities to be calculated
j <- 0:(.Object@m-1)
# aux.pointsForEstimation is a matrix with all the points (j+gamma)/m where the density is evaluated by the empirical distribution
# (density estimator in this case) for the polinomial approach
aux.pointsForEstimation <- matrix(rep((j + .Object@gamma) / .Object@m, x.new.length), ncol = x.new.length)
# The estimated density value at point (j+gamma)/m
f.star <- density(.Object@densityEstimator, aux.pointsForEstimation, scaled=TRUE)
# The binomial probability (P_{k,m-a})
P <- sapply(x.new,FUN = function(x,j,m){
#dbeta(x,shape1,shape2)
choose(m,j)*x^j*(1-x)^(m-j)
},
j = j, m = .Object@m - 1)
densities <- colSums(f.star * P)
x.densities[x.indices == 0] <- densities
}else{}
# include the density (density=0) of the out-of-bound x points in the final result
aux.density <- numeric(numDataPoints)
aux.density[index.nozero] <- x.densities
x.densities <- aux.density
#if x is a matrix, we storte the densities as a matrix object
if(isMatrix.x){
dim(x.densities) <- dims
}
#if data are in another scale (not in the [0,1] interval) we should
# normalize the density by dividing it by the length
# of the interval so that the density integrates to 1
domain.length <- .Object@upper.limit - .Object@lower.limit
if(!scaled){
x.densities <- x.densities/domain.length
}
return(x.densities)
}
)
#####################################
## Constructor functions for users ##
#####################################
kakizawaB1 <- function(dataPoints,estimator=NULL,m=round(length(dataPoints)^(2/5)), gamma=0.5,dataPointsCache=NULL, lower.limit=0,upper.limit=1){
#cat("~~~~~~ KakizawaB1: constructor ~~~~~~\n")
dataPoints.scaled <- dataPoints
dataPointsCache.scaled <- dataPointsCache
if(is.null(dataPointsCache)){
dataPointsCache.scaled <- seq(0,1,0.01)
}
if(lower.limit!=0 || upper.limit!=1){
dataPoints.scaled <- (dataPoints-lower.limit)/(upper.limit-lower.limit)
if(!is.null(dataPointsCache)){
dataPointsCache.scaled <- (dataPointsCache-lower.limit)/(upper.limit-lower.limit)
}
}
if(is.null(estimator)){
estimator <- muller94BoundaryKernel(dataPoints=dataPoints.scaled)
}
polinomialModel <- new(Class="KakizawaB1",dataPoints = dataPoints.scaled, m = m, dataPointsCache = dataPointsCache.scaled,
gamma = gamma, densityEstimator = estimator, lower.limit=lower.limit,upper.limit=upper.limit)
setDensityCache(polinomialModel, densityFunction=NULL)
return(polinomialModel)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.