Nothing
#************************************************************************
# Kernel estimator with density-wise normalization as described in
# Chen's 99 paper:
#
# @article{Chen1999,
# title = {Beta kernel estimators for density functions},
# author = {Chen, Song Xi},
# journal = {Computational Statistics \& Data Analysis},
# year = {1999},
# volume = {31},
# pages = {131--145}
# }
#
#************************************************************************
setClass(
Class = "MacroBetaChen99Kernel",
representation = representation(
normalizationConst = "numeric"
),
contains = "Chen99Kernel"
)
if(!isGeneric("setNormalizationConst")){
setGeneric (
name = "setNormalizationConst",
def = function(.Object){standardGeneric("setNormalizationConst")}
)}
setMethod(
f = "setNormalizationConst",
signature = "MacroBetaChen99Kernel",
definition = function(.Object){
f <- function(x,kernel){
density(as(kernel,"Chen99Kernel"),x,scaled=TRUE)
}
normalizationConst <- integrate(f,lower=0,upper=1,kernel=.Object)$value
# Save the normalization constants in the kernel and export the results to the global object
# obtain the global name of the variable to modify
objectGlobalName <- deparse(substitute(.Object))
# modify the variable
.Object@normalizationConst <- normalizationConst
# assign the local variable to the global variable
assign(objectGlobalName,.Object,envir=parent.frame())
}
)
setMethod(
f = "density",
signature = "MacroBetaChen99Kernel",
definition = function(x,values,scaled = FALSE) {
.Object <- x
x <- values
isMatrix.x <- is.matrix(x)
#dims = [nrows,ncols]
dims <- dim(x)
if(!scaled){
# scale the data to the 0-1 interval
x <- getScaledPoints(.Object,x)
}
# if the normalization constant have not been calculated yet, we calculate it now
if(length(.Object@normalizationConst) == 0){
# obtain the global name of the variable to modify
objectGlobalName <- deparse(substitute(.Object))
# modify the variable
setNormalizationConst(.Object)
# assign the local variable to the global variable
assign(objectGlobalName,.Object,envir=parent.frame())
}
# if any value in x is lower than 0 or grater than 1 its density is 0
numDataPoints <- length(x)
index.nozero <- which(x>=0 & x <=1)
x <- x[index.nozero]
if(length(x) == 0){ # all elements in x were out of bound
return(rep(0,numDataPoints - length(index.nozero)))
}
# x is considered as a vector even if it is a matrix(elements taken by columns)
x.indices <- numeric(length(x))
x.densities <- numeric(length(x))
if(length(.Object@densityCache) == length(.Object@dataPointsCache)){
# if there are density values calculated in the cache, first we look
# at the cache to check whether some of the values in x have been already calculated
x.indices <- match(x, .Object@dataPointsCache, nomatch=0)
if(any(x.indices > 0)){
# the density of some of the points are already calculated in the cache
x.densities[x.indices != 0] <- .Object@densityCache[x.indices[x.indices!=0]]
}else{}
}else{}
# the data poins whose densities are not calculated in the cache
x.new <- x[x.indices == 0]
x.new.length <- length(x.new)
if(x.new.length > 0){
#just in case we remove the density cache since it is calculated for a MacroBetaChen99Kernle
forceDensityCacheTo(.Object,numeric(0))
x.densities[x.indices == 0] <- callNextMethod(.Object, x.new, scaled=TRUE)/.Object@normalizationConst
}else{}
# include the density (density=0) of the out-of-bound x points in the final result
aux.density <- numeric(numDataPoints)
aux.density[index.nozero] <- x.densities
x.densities <- aux.density
#if x is a matrix, we store the densities as a matrix object
if(isMatrix.x){
dim(x.densities) <- dims
}
# if data are in another scale (not in the [0,1] interval) we should
# normalize the density by dividing it by the length
# of the interval so that the density integrates to 1
domain.length <- .Object@upper.limit - .Object@lower.limit
if(!scaled){
x.densities <- x.densities/domain.length
}
return(x.densities)
}
)
#####################################
## Constructor functions for users ##
#####################################
macroBetaChen99Kernel <- function(dataPoints, b=length(dataPoints)^(-2/5), dataPointsCache=NULL, modified = FALSE, lower.limit=0,upper.limit=1){
#cat("~~~~~~ MacroBetaChen99Kernel: constructor ~~~~~~\n")
dataPoints.scaled <- dataPoints
dataPointsCache.scaled <- dataPointsCache
if(is.null(dataPointsCache)){
dataPointsCache.scaled <- seq(0,1,0.01)
}
if(lower.limit!=0 || upper.limit!=1){
dataPoints.scaled <- (dataPoints-lower.limit)/(upper.limit-lower.limit)
if(!is.null(dataPointsCache)){
dataPointsCache.scaled <- (dataPointsCache-lower.limit)/(upper.limit-lower.limit)
}
}
kernel <- new(Class="MacroBetaChen99Kernel",dataPoints = dataPoints.scaled, b = b, dataPointsCache = dataPointsCache.scaled, modified = modified, lower.limit=lower.limit,upper.limit=upper.limit)
setNormalizationConst(kernel)
setDensityCache(kernel, densityFunction=NULL)
return(kernel)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.