autoplot.plm0 | R Documentation |
Visualize discharge rating curve model objects
## S3 method for class 'plm0'
autoplot(
object,
...,
type = "rating_curve",
param = NULL,
transformed = FALSE,
title = NULL,
xlim = NULL,
ylim = NULL
)
## S3 method for class 'plm'
autoplot(
object,
...,
type = "rating_curve",
param = NULL,
transformed = FALSE,
title = NULL,
xlim = NULL,
ylim = NULL
)
## S3 method for class 'gplm0'
autoplot(
object,
...,
type = "rating_curve",
param = NULL,
transformed = FALSE,
title = NULL,
xlim = NULL,
ylim = NULL
)
## S3 method for class 'gplm'
autoplot(
object,
...,
type = "rating_curve",
param = NULL,
transformed = FALSE,
title = NULL,
xlim = NULL,
ylim = NULL
)
object |
an object of class "plm0","plm","gplm0" or "gplm". |
... |
other plotting parameters (not used in this function) |
type |
a character denoting what type of plot should be drawn. Defaults to "rating_curve". Possible types are
|
param |
a character vector with the parameters to plot. Defaults to NULL and is only used if type is "trace" or "histogram". Allowed values are the parameters given in the model summary of x as well as "hyperparameters" or "latent_parameters" for specific groups of parameters. |
transformed |
a logical value indicating whether the quantity should be plotted on a transformed scale used during the Bayesian inference. Defaults to FALSE. |
title |
a character denoting the title of the plot |
xlim |
numeric vector of length 2, denoting the limits on the x axis of the plot. Applicable for types "rating_curve","rating_curve_mean","f","beta","sigma_eps","residuals". |
ylim |
numeric vector of length 2, denoting the limits on the y axis of the plot. Applicable for types "rating_curve","rating_curve_mean","f","beta","sigma_eps","residuals". |
returns an object of class "ggplot2".
autoplot(plm0)
: Autoplot method for plm0
autoplot(plm)
: Autoplot method for plm
autoplot(gplm0)
: Autoplot method for gplm0
autoplot(gplm)
: Autoplot method for gplm
plm0
, plm
, gplm0
and gplm
for fitting a discharge rating curve and summary.plm0
, summary.plm
, summary.gplm0
and summary.gplm
for summaries. It is also useful to look at spread_draws
and gather_draws
to work directly with the MCMC samples.
library(ggplot2)
data(krokfors)
set.seed(1)
plm0.fit <- plm0(Q~W,krokfors,num_cores=2)
autoplot(plm0.fit)
autoplot(plm0.fit,transformed=TRUE)
autoplot(plm0.fit,type='histogram',param='c')
autoplot(plm0.fit,type='histogram',param='c',transformed=TRUE)
autoplot(plm0.fit,type='histogram',param='hyperparameters')
autoplot(plm0.fit,type='histogram',param='latent_parameters')
autoplot(plm0.fit,type='residuals')
autoplot(plm0.fit,type='f')
autoplot(plm0.fit,type='sigma_eps')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.