Description Usage Arguments Value Note Author(s) References Examples
View source: R/fullMCMC_complexityPrior.R
This is the main function of the package, implementing the MCMC sampler described in Papastamoulis et al (2017).
1 2 3 4 5 | beast(myDataList, burn, nIter, mhPropRange, mhSinglePropRange, startPoint,
timeScale, savePlots, zeroNormalization, LRange, tau,
gammaParameter, nu0, alpha0, beta0, subsetIndex, saveTheta, sameVariance,
Prior
)
|
myDataList |
Observed data in the form of a |
burn |
Number of iterations that will be discarder as burn-in period. Default value: |
nIter |
Number of MCMC iterations. Default value: |
mhPropRange |
Positive integer corresponding to the parameter d_1 of MCMC Move 3.a of Papastamoulis et al (2017). Default value: |
mhSinglePropRange |
Positive integer denoting the parameter d_2 of Papastamoulis et al (2017). Default value: |
startPoint |
An (optional) positive integer pointing at the minimum time-point where changes are allowed to occur. Default value: |
timeScale |
Null. |
savePlots |
Character denoting the name of the folder where various plots will be saved to. |
zeroNormalization |
Logical value denoting whether to normalize to zero all time time-series for t=1. Default: |
LRange |
Range of possible values for the number of change-points. Default value: |
tau |
Positive real number corresponding to parameter c in Move 2 of Papastamoulis et al (2017). Default value: |
gammaParameter |
Positive real number corresponding to parameter α of the exponential prior distribution. Default value: |
nu0 |
Positive real number corresponding to prior parameter ν_0 in Papastamoulis et al (2017). Default value: |
alpha0 |
Positive real number corresponding to prior parameter α_0 in Papastamoulis et al (2017). Default value: |
beta0 |
Positive real number corresponding to prior parameter β_0 in Papastamoulis et al (2017). Default value: |
subsetIndex |
Optional subset of integers corresponding to time-series indexes. If not null, the sampler will be applied only to the specified subset. |
saveTheta |
Logical value indicating whether to save the generated values of the mean per time-point across the MCMC trace. Default: FALSE. |
sameVariance |
Logical value indicating whether to assume the same variance per time-point across time-series. Default value: |
Prior |
Character string specifying the prior distribution of the number of change-points. Allowed values: |
The output of the sampler is returned as a list, with the following features:
Cutpoint_posterior_median |
The estimated medians per change-point, conditionally on the most probable number of change-points per time-series. |
Cutpoint_posterior_variance |
The estimated variances per change-points, conditionally on the most probable number of change-points per time-series. |
NumberOfCutPoints_posterior_distribution |
Posterior distributions of number of change-points per time-series. |
NumberOfCutPoints_MAP |
The most probable number of change-points per time-series. |
Metropolis-Hastings_acceptance_rate |
Acceptance of the MCMC move-types. |
subject_ID |
the identifier of individual time-series. |
Cutpoint_mcmc_trace_map |
The sampled values of each change-point per time series, conditionally on the MAP values. |
theta |
The sampled values of the means per time-series, conditionally on the MAP values. |
nCutPointsTrace |
The sampled values of the number of change-points, per time-series. |
The complexity prior distribution with parameter gammaParameter = 2
is the default prior assumption imposed on the number of change-points. Smaller (larger) values of gammaParameter
will a-priori support larger (respectively: smaller) number of change-points.
For completeness purposes, the Poisson distribution is also allowed in the Prior
. In this latter case, the gammaParameter
denotes the rate parameter of the Poisson distribution. Note that in this case the interpretation of gammaParameter
is reversed: Smaller (larger) values of gammaParameter
will a-priori support smaller (respectively: larger) number of change-points.
Panagiotis Papastamoulis
Papastamoulis P., Furukawa T., van Rhijn N., Bromley M., Bignell E. and Rattray M. (2017). Bayesian detection of piecewise linear trends in replicated time-series with application to growth data modelling. arXiv:1709.06111 [stat.AP]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | # toy-example (MCMC iterations not enough)
library('beast') # load package
data("FungalGrowthDataset") # load dataset
myIndex <- c(392, 62, 3, 117) # run the sampler only for the
# specific subset of time-series
set.seed(1)
# Run MCMC sampler with very small number of iterations (nIter):
run_mcmc <- beast(myDataList = FungalGrowthDataset, subsetIndex = myIndex,
zeroNormalization = TRUE, nIter = 40, burn = 20)
# Print output:
print(run_mcmc)
# Plot output to file: "beast_plot.pdf"
plot(run_mcmc, fileName = "beast_plot_toy.pdf", timeScale=1/6, xlab = "hours", ylab = "growth")
# Run the following commands to obtain convergence:
## Not run:
# This example illustrates the package using a subset of four
# time-series of the fungal dataset.
library('beast') # load package
data("FungalGrowthDataset") # load dataset
myIndex <- c(392, 62, 3, 117) # run the sampler only for the
# specific subset of time-series
set.seed(1) # optional
# Run MCMC sampler with the default number of iterations (nIter =70000):
run_mcmc <- beast(myDataList = FungalGrowthDataset, subsetIndex = myIndex,
zeroNormalization = TRUE)
# Print output:
print(run_mcmc)
# Plot output to file: "beast_plot.pdf"
plot(run_mcmc, fileName = "beast_plot.pdf", timeScale=1/6, xlab = "hours", ylab = "growth")
# NOTE 1: for a complete analysis remove the `subsetIndex = myIndex` argument.
# NOTE 2: `zeroNormalization = TRUE` is an optional argument that forces all
# time-series to start from zero. It is not supposed to be used
# for other applications.
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.