Description Usage Arguments Value Author(s) Examples
View source: R/glmnetPredict.R
Dataframe used to create training and test datasets using specified fraction for the training sample. The data matrix must be comprised of continuous variables only (no factors).
1 | trainTestPartition(Xy, trainFrac = 2/3)
|
Xy |
Dataframe with column names, last column is the response variable and others are the regression input variables. The data matrix must be comprised of continuous variables only (no factors). |
trainFrac |
Fraction to be used for the training sample. |
A list with components
XyTr |
Training dataframe. |
XTr |
Matrix, input training variables. |
yTr |
Vector, output training variable. |
XyTe |
Training dataframe. |
XTe |
Matrix, input test variables. |
yTe |
Vector, output test variable. |
XyTr |
Training dataframe. |
XyTr |
Training dataframe. |
XyTr |
Training dataframe. |
A. I. McLeod
1 2 3 | set.seed(7733551)
out <- trainTestPartition(mcdonald)
round(glmnetGridTable(out),4)
|
Loading required package: leaps
OLS StepAIC StepBIC RR1 RR2 RR3 RR4
PREC 24.7922 24.5506 22.6913 0.9227 1.1468 0.9663 1.1009
JANT -2.0511 0.0000 0.0000 -0.2811 -0.3105 -0.2881 -0.3059
JULT -17.2703 -8.8751 0.0000 -0.1116 -0.2800 -0.1400 -0.2409
OVR65 -11.3140 0.0000 0.0000 -0.3840 -0.3771 -0.3813 -0.3763
POPN -7.7363 0.0000 0.0000 26.2878 26.8236 26.5222 26.8452
EDUC -8.5628 -10.2329 -10.5808 -9.0382 -9.7324 -9.2145 -9.6318
HOUS -7.0558 0.0000 0.0000 -0.4068 -0.4227 -0.4100 -0.4193
DENS 16.9880 15.8602 17.0955 0.0072 0.0085 0.0074 0.0082
NONW 18.8360 18.0960 13.2945 1.1536 1.3757 1.1988 1.3323
WWDRK -2.5408 0.0000 0.0000 -0.3659 -0.3302 -0.3602 -0.3384
POOR -1.7114 0.0000 0.0000 0.4566 0.4549 0.4576 0.4564
HC -59.1364 0.0000 0.0000 -0.0153 -0.0179 -0.0158 -0.0173
NOX 54.6550 0.0000 0.0000 -0.0012 0.0012 -0.0007 0.0007
SOx 10.3891 16.3166 17.6953 0.1464 0.1730 0.1520 0.1680
HUMID -3.6143 0.0000 0.0000 0.3401 0.3857 0.3514 0.3792
NORM 92.1202 40.3912 37.5363 27.8533 28.6081 28.1356 28.5900
RMSE 56.7118 56.3638 58.2911 54.9497 53.4939 54.6137 53.7420
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.