Description Details Author(s) References See Also Examples
Provides new information criterion BICq as well as AIC, BIC and EBIC for selecting the best model. Additionally, various CV algorithms are also provided.
Package: | bestglm |
Type: | Package |
Version: | 0.33 |
Date: | 2011-11-03 |
License: | GLP 2.0 or greater |
LazyData: | yes |
LazyLoad: | yes |
bestglm is the main function. All other functions are utility functions and are not normally invoked.
Many examples are provided in the vignettes accompanying this package.
The vignettes are produced using the R package Sweave
and so R scripts
can easily be extracted.
The R package xtable
is needed for the vignette in SimExperimentBICq.Rnw
.
A.I. McLeod and Changjiang Xu
Xu, C. and McLeod, A.I. (2009). Bayesian Information Criterion with Bernouilli Prior.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | ## Not run:
data(zprostate)
train<-(zprostate[zprostate[,10],])[,-10]
#Best subset using AIC
bestglm(train, IC="AIC")
#Best subset using BIC
bestglm(train, IC="BIC")
#Best subset using EBIC
bestglm(train, IC="BICg")
#Best subset using BICg with g=0.5 (tuning parameter)
bestglm(train, IC="BICg", t=0.5)
#Best subset using BICq. Note BICq with q=0.25 is default.
bestglm(train, IC="BICq")
#Best subset using BICq with q=0.5 (equivalent to BIC)
bestglm(train, IC="BICq", t=0.5)
#Remark: set seed since CV depends on it
set.seed(123321123)
bestglm(train, IC="CV", t=10)
#using HTF method
bestglm(train, IC="CV", CVArgs=list(Method="HTF", K=10, REP=1))
#Best subset, logistic regression
data(SAheart)
bestglm(SAheart, IC="BIC", family=binomial)
#Best subset, factor variables with more than 2 levels
data(AirQuality)
#subset
bestglm(AirQuality, IC="BICq")
## End(Not run)
|
Loading required package: leaps
AIC
BICq equivalent for q in (0.708764213288625, 0.889919748490004)
Best Model:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.4668675 0.08760022 28.160516 6.632457e-36
lcavol 0.6764486 0.12383666 5.462426 9.883880e-07
lweight 0.2652760 0.09363348 2.833132 6.298761e-03
age -0.1450300 0.09756540 -1.486490 1.424742e-01
lbph 0.2095349 0.10128348 2.068796 4.295574e-02
svi 0.3070936 0.12190105 2.519204 1.449125e-02
lcp -0.2872242 0.15300241 -1.877253 6.543004e-02
pgg45 0.2522850 0.11562030 2.182013 3.310324e-02
BIC
BICq equivalent for q in (0.0176493852011195, 0.512566675362625)
Best Model:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.4773573 0.09304738 26.624687 2.475214e-36
lcavol 0.7397137 0.09318316 7.938277 4.141615e-11
lweight 0.3163282 0.08830716 3.582135 6.576173e-04
BICg(g = 1)
BICq equivalent for q in (0.0176493852011195, 0.512566675362625)
Best Model:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.4773573 0.09304738 26.624687 2.475214e-36
lcavol 0.7397137 0.09318316 7.938277 4.141615e-11
lweight 0.3163282 0.08830716 3.582135 6.576173e-04
BICg(g = 0.5)
BICq equivalent for q in (0.0176493852011195, 0.512566675362625)
Best Model:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.4773573 0.09304738 26.624687 2.475214e-36
lcavol 0.7397137 0.09318316 7.938277 4.141615e-11
lweight 0.3163282 0.08830716 3.582135 6.576173e-04
BICq(q = 0.25)
BICq equivalent for q in (0.0176493852011195, 0.512566675362625)
Best Model:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.4773573 0.09304738 26.624687 2.475214e-36
lcavol 0.7397137 0.09318316 7.938277 4.141615e-11
lweight 0.3163282 0.08830716 3.582135 6.576173e-04
BICq(q = 0.5)
BICq equivalent for q in (0.0176493852011195, 0.512566675362625)
Best Model:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.4773573 0.09304738 26.624687 2.475214e-36
lcavol 0.7397137 0.09318316 7.938277 4.141615e-11
lweight 0.3163282 0.08830716 3.582135 6.576173e-04
CVd(d = 47, REP = 10)
No BICq equivalent
Best Model:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.4627121 0.08901202 27.667185 3.167240e-36
lcavol 0.5566392 0.11360017 4.899985 7.408246e-06
lweight 0.2415963 0.09467037 2.551974 1.323253e-02
lbph 0.1989292 0.10187183 1.952740 5.544293e-02
svi 0.2393565 0.11734589 2.039752 4.571228e-02
pgg45 0.1221447 0.10256941 1.190849 2.383261e-01
CV(K = 10, REP = 1)
BICq equivalent for q in (0.0176493852011195, 0.512566675362626)
Best Model:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.4773573 0.09304738 26.624687 2.475214e-36
lcavol 0.7397137 0.09318316 7.938277 4.141615e-11
lweight 0.3163282 0.08830716 3.582135 6.576173e-04
Morgan-Tatar search since family is non-gaussian.
BIC
BICq equivalent for q in (0.190525988534164, 0.90158316218744)
Best Model:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.44644451 0.92087165 -7.000372 2.552830e-12
tobacco 0.08037533 0.02587968 3.105731 1.898095e-03
ldl 0.16199164 0.05496893 2.946967 3.209074e-03
famhistPresent 0.90817526 0.22575844 4.022774 5.751659e-05
typea 0.03711521 0.01216676 3.050542 2.284290e-03
age 0.05046038 0.01020606 4.944159 7.647325e-07
Morgan-Tatar search since factors present with more than 2 levels.
BICq(q = 0.25)
Best Model:
Df Sum Sq Mean Sq F value Pr(>F)
Wind 1 45694 45694 96.78 < 2e-16 ***
Temp 1 25119 25119 53.20 5.29e-11 ***
Residuals 108 50989 472
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.