Nothing
#' Variance of Y
#'
#' Calculate the model-implied
#' variance of \eqn{Y}.
#'
#' @section Variance of Y:
#' The variance of \eqn{Y} is given by:
#' \deqn{
#' \sigma_{Y}^{2}
#' =
#' \sigma^{2}
#' +
#' \boldsymbol{\beta}^{\prime}
#' \boldsymbol{\Sigma}_{\mathbf{X}, \mathbf{X}}
#' \boldsymbol{\beta}
#' }
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @param beta Numeric vector
#' \eqn{\boldsymbol{\beta}}.
#' Partial regression slopes.
#' @param sigmasq Numeric vector of length 1
#' \eqn{\sigma^{2}}.
#' Error variance.
#' @param sigmacapx Numeric matrix
#' \eqn{\boldsymbol{\Sigma}_{\mathbf{X}, \mathbf{X}}}.
#' Covariance matrix of
#' \eqn{X_{1}, \dots, X_{j}, \dots, X_{p}}.
#'
#' @family Moments Functions
#' @keywords strRegression moments internal
#' @noRd
.SigmaYSq <- function(beta,
sigmasq,
sigmacapx) {
return(
.Vec(
sigmasq + crossprod(
beta,
sigmacapx
) %*% beta
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.