| BetaR | R Documentation | 
Class and methods for beta distributions in regression specification using the workflow from the distributions3 package.
BetaR(mu, phi)
mu | 
 numeric. The mean of the beta distribution.  | 
phi | 
 numeric. The precision parameter of the beta distribution.  | 
Alternative parameterization of the classic beta distribution in
terms of its mean mu and precision parameter phi.
Thus, the distribution provided by BetaR is equivalent to
the Beta distribution with parameters
alpha = mu * phi and beta = (1 - mu) * phi.
A BetaR distribution object.
dbetar, Beta
## package and random seed
library("distributions3")
set.seed(6020)
## three beta distributions
X <- BetaR(
  mu  = c(0.25, 0.50, 0.75),
  phi = c(1, 1, 2)
)
X
## compute moments of the distribution
mean(X)
variance(X)
skewness(X)
kurtosis(X)
## support interval (minimum and maximum)
support(X)
## simulate random variables
random(X, 5)
## histograms of 1,000 simulated observations
x <- random(X, 1000)
hist(x[1, ])
hist(x[2, ])
hist(x[3, ])
## probability density function (PDF) and log-density (or log-likelihood)
x <- c(0.25, 0.5, 0.75)
pdf(X, x)
pdf(X, x, log = TRUE)
log_pdf(X, x)
## cumulative distribution function (CDF)
cdf(X, x)
## quantiles
quantile(X, 0.5)
## cdf() and quantile() are inverses (except at censoring points)
cdf(X, quantile(X, 0.5))
quantile(X, cdf(X, 1))
## all methods above can either be applied elementwise or for
## all combinations of X and x, if length(X) = length(x),
## also the result can be assured to be a matrix via drop = FALSE
p <- c(0.05, 0.5, 0.95)
quantile(X, p, elementwise = FALSE)
quantile(X, p, elementwise = TRUE)
quantile(X, p, elementwise = TRUE, drop = FALSE)
## compare theoretical and empirical mean from 1,000 simulated observations
cbind(
  "theoretical" = mean(X),
  "empirical" = rowMeans(random(X, 1000))
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.