View source: R/betategarch-source.R
coef.tegarch | R Documentation |
Extraction methods for objects of class 'tegarch' (i.e. the result of estimating a Beta-Skew-t-EGARCH model)
## S3 method for class 'tegarch'
coef(object, ...)
## S3 method for class 'tegarch'
fitted(object, verbose = FALSE, ...)
## S3 method for class 'tegarch'
logLik(object, ...)
## S3 method for class 'tegarch'
print(x, ...)
## S3 method for class 'tegarch'
residuals(object, standardised = TRUE, ...)
## S3 method for class 'tegarch'
summary(object, verbose = FALSE, ...)
## S3 method for class 'tegarch'
vcov(object, ...)
object |
an object of class 'tegarch' |
x |
an object of class 'tegarch' |
verbose |
logical. If FALSE (default) then only basic information is returned |
standardised |
logical. If TRUE (default) then the standardised residuals are returned. If FALSE then the scaled (by sigma) residuals are returned |
... |
additional arguments |
Empty
coef: |
A numeric vector containing the parameter estimates |
fitted: |
A zoo object. If verbose=FALSE (default), then the zoo object is a vector containing the fitted conditional standard deviations. If verbose = TRUE, then the zoo object is a matrix containing the return series y, fitted scale (sigma), fitted conditional standard deviation (stdev), fitted log-scale (lambda), dynamic component(s) (lambdadagger in the 1-component specification, lambda1dagger and lambda2dagger in the 2-compoment specification), the score (u), scaled residuals (epsilon) and standardised residuals (residstd) |
logLik: |
The value of the log-likelihood at the maximum |
print: |
Prints the most important parts of the estimation results |
residuals: |
A zoo object. If standardised = TRUE (default), then the zoo object is a vector with the standardised residuals. If standardised = FALSE, then the zoo vector contains the scaled residuals |
summary: |
A list. If verbose = FALSE, then only the most important entries are returned. If verbose = TRUE, then all entries apart from the 1st. (the y series) is returned |
vcov: |
The variance-covariance matrix of the estimated coefficents. The matrix is obtained by inverting the numerically estimated Hessian |
Genaro Sucarrat, https://www.sucarrat.net/
C. Fernandez and M. Steel (1998), 'On Bayesian Modeling of Fat Tails and Skewness', Journal of the American Statistical Association 93, pp. 359-371, \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1080/01621459.1998.10474117")}
A. Harvey and G. Sucarrat (2014), 'EGARCH models with fat tails, skewness and leverage'. Computational Statistics and Data Analysis 76, pp. 320-338, \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1016/j.csda.2013.09.022")}
G. Sucarrat (2013), 'betategarch: Simulation, Estimation and Forecasting of First-Order Beta-Skew-t-EGARCH models'. The R Journal (Volume 5/2), pp. 137-147, ,\Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.32614/RJ-2013-034")}
tegarch
, coef
, fitted
, logLik
, predict.tegarch
, print
, residuals
, summary
, vcov
##simulate 1000 observations from model with default parameter values:
set.seed(123)
y <- tegarchSim(1000)
##estimate and store as 'mymodel':
mymod <- tegarch(y)
##print estimation result:
print(mymod)
##extract coefficients:
coef(mymod)
##extract log-likelihood:
logLik(mymod)
##plot fitted conditional standard deviations:
plot(fitted(mymod))
##plot all the fitted series:
plot(fitted(mymod, verbose=TRUE))
##histogram of standardised residuals:
hist(residuals(mymod))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.