Nothing
Here we're checking the sparse-matrix version of pQF
on a really unsuitably small example with 67 markers, because it's the one that comes with the SKAT
package: see help(SKAT)
library(SKAT) #CRAN library(bigQF) #github/tslumley set.seed(2018-5-18)
First example: continuous phenotype, no adjustment
data(SKAT.example) attach(SKAT.example) #look, it's not my fault, that's how they did it. obj<-SKAT_Null_Model(y.c ~ 1, out_type="C") skat.out1<-SKAT(Z, obj) skat.qf1a<-SKAT.matrixfree(Z) skat.qf1b<-SKAT.matrixfree(Z,model=lm(y.c~1)) skat.qf1c<-SKAT.matrixfree(Z,model=glm(y.c~1)) skat.out1$Q skat.qf1a$Q(y.c) skat.qf1b$Q() ## phenotype used in fitting skat.qf1b$Q(y.c) ## new phenotype skat.out1$p.value pQF(skat.out1$Q,skat.qf1a,neig=60,convolution.method="integration" ) pQF(skat.out1$Q,skat.qf1b,neig=60,convolution.method="integration" ) pQF(skat.out1$Q,skat.qf1c,neig=60,convolution.method="integration" )
The warning indicates the remainder term in the approximation has been dropped, which is appropriate. If you don't specify convolution.method
the default is the saddlepoint approximation -- the impact is in the third decimal place.
And more systematically
set.seed(2018-5-18) p<-lapply(1:65, function(k) pQF(skat.out1$Q, skat.qf1a, neig=k, convolution.method="integration",tr2.sample.size=1000 ) ) pdf<-data.frame(p=do.call(c,p),k=1:65) plot(p~k,data=pdf,pch=19,col="orange", ylim=c(0.017,0.020)) abline(h=skat.out1$p.value,lty=2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.