Nothing
#' Function: Utility Function
#'
#' @description
#' This function represents an exponent used in calculating utility
#' from reward. Its application varies depending on the specific model:
#' \itemize{
#' \item \strong{Stevens' Power Law}:
#' Here, utility is calculated by raising the reward to the power
#' of \code{gamma}. This describes how the subjective value (utility) of a
#' reward changes non-linearly with its objective magnitude.
#'
#' \item \strong{Kahneman's Prospect Theory}:
#' This theory applies exponents differently for gains and losses,
#' and introduces a loss aversion coefficient:
#' \itemize{
#' \item For positive rewards (gains), utility is the reward
#' raised to the power of \code{gamma[1]}.
#' \item For negative rewards (losses), utility is calculated
#' by first multiplying the reward by \code{beta}, and then raising
#' this product to the power of \code{gamma[2]}. Here, \code{beta} acts
#' as a loss aversion parameter, accounting for the greater psychological
#' impact of losses compared to equivalent gains.
#' }
#' }
#'
#' @note
#' When customizing these functions, please ensure that you do not modify
#' the arguments. Instead, only modify the \code{if-else} statements or
#' the internal logic to adapt the function to your needs.
#'
#' @param i
#' The current row number.
#'
#' @param L_freq
#' The frequency of left option appearance
#'
#' @param R_freq
#' The frequency of right option appearance
#'
#' @param L_pick
#' The number of times left option was picked
#'
#' @param R_pick
#' The number of times left option was picked
#'
#' @param L_value
#' The value of the left option
#'
#' @param R_value
#' The value of the right option
#'
#' @param var1 [character]
#' Column name of extra variable 1. If your model uses more than just reward
#' and expected value, and you need other information, such as whether the
#' choice frame is Gain or Loss, then you can input the 'Frame' column as
#' var1 into the model.
#'
#' \code{default: var1 = "Extra_Var1"}
#'
#' @param var2 [character]
#' Column name of extra variable 2. If one additional variable, var1, does not
#' meet your needs, you can add another additional variable, var2, into your
#' model.
#'
#' \code{default: var2 = "Extra_Var2"}
#'
#' @param value
#' The expected value of the stimulus in the subject's mind at this point in time.
#'
#' @param utility
#' The subjective value that the subject assigns to the objective reward.
#'
#' @param reward
#' The objective reward received by the subject after selecting a stimulus.
#'
#' @param occurrence
#' The number of times the same stimulus has been chosen.
#'
#' @param gamma [vector]
#' This parameter represents the exponent in utility functions,
#' \code{fcun_gamma}, specifically:
#' \itemize{
#' \item \strong{Stevens' Power Law}:
#' Utility is modeled as:
#' \deqn{U(R) = {R}^{\gamma}}
#'
#' \item \strong{Kahneman's Prospect Theory}:
#' This exponent is applied differently based on the sign of the reward:
#' \deqn{U(R) = \begin{cases}
#' R^{\gamma_{1}}, & R > 0 \\
#' \beta \cdot R^{\gamma_{2}}, & R < 0
#' \end{cases}}
#' }
#'
#' @param alpha [vector]
#' Extra parameters that may be used in functions.
#'
#' @param beta [vector]
#' Extra parameters that may be used in functions.
#'
#' @return Discount rate and utility
#'
#' @examples
#' \dontrun{
#' func_gamma <- function(
#' # Trial number
#' i,
#' # Number of times this option has appeared
#' L_freq,
#' R_freq,
#' # Number of times this option has been chosen
#' L_pick,
#' R_pick,
#' # Current value of this option
#' L_value,
#' R_value,
#' # Extra variables
#' var1 = NA,
#' var2 = NA,
#'
#' # Expected value for this stimulus
#' value,
#' # Subjective utility
#' utility,
#' # Reward observed after choice
#' reward,
#' # Occurrence count for this stimulus
#' occurrence,
#'
#' # Free Parameter
#' gamma = 1,
#' # Extra parameters
#' alpha,
#' beta
#' ){
#' ############################## [ Utility ] ##################################
#' if (length(gamma) == 1) {
#' gamma <- as.numeric(gamma)
#' utility <- sign(reward) * (abs(reward) ^ gamma)
#' }
#' ############################### [ Error ] ###################################
#' else {
#' utility <- "ERROR"
#' }
#' return(list(gamma, utility))
#' }
#' }
#'
func_gamma <- function(
# 试次序号
i,
# 该选项出现了几次
L_freq,
R_freq,
# 该选项被选过几次
L_pick,
R_pick,
# 该选项目前的价值
L_value,
R_value,
# 额外需要用到的变量1
var1 = NA,
# 额外需要用到的变量2
var2 = NA,
# 被选择选项之前的客观价值
value,
# 被选择选项之前的主观价值
utility,
# 被选择选项给予的奖励
reward,
# 第几次选择该选项
occurrence,
# 自由参数
gamma = 1,
# 额外参数
alpha,
beta
){
################################# [ Utility ] ##################################
if (length(gamma) == 1) {
gamma <- as.numeric(gamma)
utility <- sign(reward) * (abs(reward) ^ gamma)
}
################################## [ Error ] ###################################
else {
utility <- "ERROR" # 检查错误
}
return(list(gamma, utility))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.