| SCSE | R Documentation |
SCSE is used to calculate y values at given x values using
the Sarabia-Castillo-Slottje equation. The equation describes the y coordinates of the Lorenz curve.
SCSE(P, x)
P |
the parameters of the Sarabia-Castillo-Slottje equation. |
x |
the given |
y = x^{\gamma}\left[1-\left(1-x\right)^{\alpha}\right]^{\beta}.
Here, x and y represent the independent and dependent variables, respectively;
and \gamma, \alpha and \beta are constants to be estimated, where \gamma \ge 0,
0 < \alpha \le 1, and \beta \ge 1.
There are three elements in P, representing
the values of \gamma, \alpha and \beta, respectively.
The y values predicted by the Sarabia-Castillo-Slottje equation.
The numerical range of x should range between 0 and 1.
Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.
Sarabia, J.-M., Castillo, E., Slottje, D.J. (1999) An ordered family of Lorenz curves.
Journal of Econometrics. 91, 43-60. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/S0304-4076(98)00048-7")}
Sitthiyot, T., Holasut, K. (2023) A universal model for the Lorenz curve with novel applications for datasets containing zeros and/or exhibiting extreme inequality. Scientific Reports 13, 4729. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1038/s41598-023-31827-x")}
fitLorenz, MPerformanceE, SarabiaE, SHE
X1 <- seq(0, 1, len=2000)
Pa2 <- c(0, 0.790, 1.343)
Y2 <- SCSE(P=Pa2, x=X1)
dev.new()
plot( X1, Y2, cex.lab=1.5, cex.axis=1.5, type="l", asp=1, xaxs="i",
yaxs="i", xlim=c(0, 1), ylim=c(0, 1),
xlab="Cumulative proportion of the number of infructescences",
ylab="Cumulative proportion of the infructescence length" )
graphics.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.