| areaGE | R Documentation |
[0, 2\pi)
areaGE is used to calculate the area of the polygon
generated by the Gielis curve within [0, 2\pi).
areaGE(expr, P, m = 1, simpver = NULL,
nval = 1, subdivisions = 100L,
rel.tol = .Machine$double.eps^0.25,
abs.tol = rel.tol, stop.on.error = TRUE,
keep.xy = FALSE, aux = NULL)
expr |
the original (or twin) Gielis equation or one of its simplified versions. |
P |
the parameters of the original (or twin) Gielis equation or one of its simplified versions. |
m |
the given |
simpver |
an optional argument to use the simplified version of the original (or twin) Gielis equation. |
nval |
the specified value for |
subdivisions |
please see the arguments for the |
rel.tol |
please see the arguments for the |
abs.tol |
please see the arguments for the |
stop.on.error |
please see the arguments for the |
keep.xy |
please see the arguments for the |
aux |
please see the arguments for the |
The arguments of P, m, simpver, and nval should correspond
to expr (i.e., GE or TGE). Please note the differences in the simplified
version number and the number of parameters between GE and TGE.
The area of the polygon within [0, 2\pi) generated by the original (or twin) Gielis equation
or one of its simplified versions.
simpver in GE is different from that in TGE.
Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.
Gielis, J. (2003) A generic geometric transformation that unifies a wide range of natural
and abstract shapes. American Journal of Botany 90, 333-338. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3732/ajb.90.3.333")}
Li, Y., Quinn, B.K., Gielis, J., Li, Y., Shi, P. (2022) Evidence that supertriangles exist in nature from the vertical projections of Koelreuteria paniculata fruit. Symmetry 14, 23. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3390/sym14010023")}
Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H.,
Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural
shapes. Annals of the New York Academy of Sciences 1516, 123-134. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/nyas.14862")}
Shi, P., Ratkowsky, D.A., Gielis, J. (2020) The generalized Gielis geometric equation and its application. Symmetry 12, 645. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3390/sym12040645")}
Shi, P., Xu, Q., Sandhu, H.S., Gielis, J., Ding, Y., Li, H., Dong, X. (2015) Comparison
of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship
between spatial density of plants and total leaf area per plant. Ecology and Evolution 5,
4578-4589. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/ece3.1728")}
curveGE, fitGE, GE, TGE
Para1 <- c(1.7170, 5.2258, 7.9802)
areaGE(GE, P = Para1, m=5, simpver=1)
Para2 <- c(2.1066, 3.5449, 0.4619, 10.5697)
areaGE(TGE, P = Para2, m=5, simpver=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.