Nothing
# filenames <- list.files("../W2 Analysis/", "*.csv")
# for (i in seq_along(filenames)) {
# assign(sub("\\.csv$", '', filenames[i]), read.csv(paste0("../W2 Analysis/", filenames[i]), stringsAsFactors = T))
# }
# filenames <- sub("\\.csv$", '', filenames)
# save(list = filenames, file = "tests/testthat/data/w2_data.Rdata")
load(test_path("data", "w2_data.Rdata"), envir = .GlobalEnv)
test_that("example 1 works", {
skip_on_cran()
example1.aov <- aov(RL ~ trt, data = example1)
withr::local_options(scipen = 100)
expect_snapshot_output(anova(example1.aov))
pred1.out <- multiple_comparisons(example1.aov, classify = "trt")
expect_equal(pred1.out$predicted.value, c(9.96, 12.26, 16.14, 17.77))
expect_snapshot_output(pred1.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "example1resplot", resplot(example1.aov))
vdiffr::expect_doppelganger(title = "example1autoplot", autoplot(pred1.out))
})
test_that("example 2 works", {
skip_on_cran()
example2.aov <- aov(TuberLengthGrowth ~ trt, data = example2)
expect_snapshot_output(anova(example2.aov))
pred2.out <- multiple_comparisons(example2.aov, classify = "trt")
expect_equal(pred2.out$predicted.value, c(11.15, 12.45, 14.02, 15.1, 16.11, 17.24, 17.83))
expect_snapshot_output(pred2.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "example2resplot", resplot(example2.aov))
vdiffr::expect_doppelganger(title = "example2autoplot", autoplot(pred2.out))
})
test_that("example 3 works", {
skip_on_cran()
example3.aov <- aov(Yield ~ Block + Variety, data = example3)
expect_snapshot_output(anova(example3.aov))
pred3.out <- multiple_comparisons(example3.aov, classify = "Variety")
expect_equal(pred3.out$predicted.value, c(1.68, 2.68, 4.72, 4.85))
expect_snapshot_output(pred3.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "example3resplot", resplot(example3.aov))
vdiffr::expect_doppelganger(title = "example3autoplot", autoplot(pred3.out))
})
test_that("example 4 works", {
skip_on_cran()
example4.aov <- aov(DM ~ row + col + trt, data = example4)
expect_snapshot_output(anova(example4.aov))
pred4.out <- multiple_comparisons(example4.aov, classify = "trt")
expect_equal(pred4.out$predicted.value, c(1707.94, 1802.7, 2053.73, 2200.08))
expect_snapshot_output(pred4.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "example4resplot", resplot(example4.aov))
vdiffr::expect_doppelganger(title = "example4autoplot", autoplot(pred4.out))
})
test_that("example 3 LMM works", {
skip_on_cran()
skip_if_not_installed("asreml")
library(asreml, quietly = T)
example3.asr <- asreml(Yield ~ Variety, random = ~ Block, residual = ~ id(Plot),
data = example3, trace = FALSE)
expect_snapshot_output(print.data.frame(asreml::wald(example3.asr, denDF = "default")$Wald))
pred3asr.out <- multiple_comparisons(example3.asr, classify = "Variety")
expect_equal(pred3asr.out$predicted.value, c(1.68, 2.68, 4.72, 4.85))
expect_snapshot_output(pred3asr.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "example3lmmresplot", resplot(example3.asr))
vdiffr::expect_doppelganger(title = "example3lmmautoplot", autoplot(pred3asr.out))
})
test_that("example 4 LMM works", {
skip_on_cran()
skip_if_not_installed("asreml")
example4.asr <- asreml(DM ~ trt, random = ~ row + col,
residual = ~ id(plots), data = example4,
trace = FALSE)
# example4.asr <- update(example4.asr)
expect_snapshot_output(print.data.frame(asreml::wald(example4.asr, denDF = "default")$Wald))
pred4lmm.out <- multiple_comparisons(example4.asr, classify = "trt")
expect_equal(pred4lmm.out$predicted.value, c(1707.94, 1802.7, 2053.73, 2200.08), tolerance = 0.01)
expect_snapshot_output(pred4lmm.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "example4lmmresplot", resplot(example4.asr))
vdiffr::expect_doppelganger(title = "example4lmmautoplot", autoplot(pred4lmm.out))
})
test_that("example 5 works", {
skip_on_cran()
skip_if_not_installed("asreml")
example5.asr <- asreml(Yield ~ Genotype + Fungicide + Genotype:Fungicide,
random = ~ Block + Block:WholePlot, residual = ~ units,
data = example5, trace = FALSE)
expect_snapshot_output(print.data.frame(asreml::wald(example5.asr, denDF = "default")$Wald))
pred5.out1 <- multiple_comparisons(example5.asr, classify = "Genotype")
expect_snapshot_output(pred5.out1)
pred5.out2 <- multiple_comparisons(example5.asr, classify = "Fungicide")
expect_snapshot_output(pred5.out2)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "example5lmmresplot", resplot(example5.asr))
vdiffr::expect_doppelganger(title = "example5lmmautoplot1", autoplot(pred5.out1))
vdiffr::expect_doppelganger(title = "example5lmmautoplot2", autoplot(pred5.out2))
})
test_that("example 6 works", {
skip_on_cran()
skip_if_not_installed("asreml")
example6.asr <- asreml(Yield ~ Treatment, random = ~ Block,
residual = ~ id(Column):ar1(Row),
data = example6, trace = FALSE)
expect_snapshot_output(print.data.frame(asreml::wald(example6.asr, denDF = "default")$Wald))
vg6 <- variogram(example6.asr)
expect_snapshot_output(summary(example6.asr)$varcomp)
expect_equal(summary(example6.asr)$varcomp$component, c(0.0000002864157, 0.1790097741606, 0.5407770686889))
# expect_warning(
logl.tab <- logl_test(example6.asr,
rand.terms = NULL, resid.terms = c("ar1(Row)"))#,
# "Some components changed by more than 1% on the last iteration.")
expect_equal(logl.tab$LogLRT.pvalue, '0.003')
pred6.out <- multiple_comparisons(example6.asr, classify = "Treatment")
expect_snapshot_output(pred6.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "example6lmmresplot", resplot(example6.asr))
vdiffr::expect_doppelganger(title = "example6variogram", vg6)
vdiffr::expect_doppelganger(title = "example6lmmautoplot2", autoplot(pred6.out))
})
test_that("example 7 works", {
skip_on_cran()
skip_if_not_installed("asreml")
example7.asr <- asreml(Yield ~ Control + Herbicide + Rate + Herbicide:Rate,
random = ~ Block, residual = ~ id(Column):ar1(Row),
data = example7, trace = FALSE)
expect_snapshot_output(print.data.frame(asreml::wald(example7.asr, denDF = "default")$Wald))
vg7 <- variogram(example7.asr)
expect_snapshot_output(print(summary(example7.asr)$varcomp, digits = 2))
# expect_warning(
logl.tab <- logl_test(example7.asr,
rand.terms = NULL, resid.terms = c("ar1(Row)"))#,
# "Some components changed by more than 1% on the last iteration.")
expect_equal(logl.tab$LogLRT.pvalue, '0.003')
expect_warning(pred7.out <- multiple_comparisons(example7.asr, classify = "Herbicide:Rate",
present = c("Control", "Herbicide", "Rate")),
"Some levels of Herbicide:Rate are aliased. They have been removed from predicted output.")
expect_snapshot_output(pred7.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "example7lmmresplot", resplot(example7.asr))
vdiffr::expect_doppelganger(title = "example7variogram", vg7)
vdiffr::expect_doppelganger(title = "example7lmmautoplot", autoplot(pred7.out))
})
###############
## Exercises ##
###############
test_that("exercise 1 works", {
skip_on_cran()
exercise1.aov <- aov(Yield ~ Variety, data = exercise1)
expect_snapshot_output(anova(exercise1.aov))
pred1e.out <- multiple_comparisons(exercise1.aov, classify = "Variety", decimals = 5)
expect_equal(pred1e.out$predicted.value, c(1.97333, 2.13000, 2.13000, 2.14000, 2.19333, 2.24000, 2.27000, 2.28333, 2.52667, 2.54000, 2.75000, 2.75333))
pred1e.out <- pred1e.out[order(pred1e.out$predicted.value, as.character(pred1e.out$Variety)),]
expect_snapshot_output(pred1e.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise1resplot", resplot(exercise1.aov))
skip_on_os("linux")
vdiffr::expect_doppelganger(title = "exercise1autoplot", autoplot(pred1e.out))
})
test_that("exercise 2 works", {
skip_on_cran()
exercise2.aov <- aov(Time ~ Treatment, data = exercise2)
expect_snapshot_output(anova(exercise2.aov))
pred2e.out <- multiple_comparisons(exercise2.aov, classify = "Treatment")
pred2e.out$predicted.value <- round(pred2e.out$predicted.value, 1)
expect_equal(pred2e.out$predicted.value, c(2.1, 2.2, 2.6, 2.8, 2.8, 3.4))
expect_snapshot(data.frame(lapply(pred2e.out, function(y) if(is.numeric(y)) round(y, 1) else y)))
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise2resplot", resplot(exercise2.aov))
vdiffr::expect_doppelganger(title = "exercise2autoplot", autoplot(pred2e.out, rotation = 90))
})
test_that("exercise 3 works", {
skip_on_cran()
exercise3.aov <- aov(AverageFruitSize ~ Replicate + Variety, data = exercise3)
expect_snapshot_output(anova(exercise3.aov))
pred3e.out <- multiple_comparisons(exercise3.aov, classify = "Variety")
expect_equal(pred3e.out$predicted.value, c(2.84, 2.86, 3.08, 4.7, 4.78, 4.96, 8.88))
expect_snapshot_output(pred3e.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise3resplot", resplot(exercise3.aov))
vdiffr::expect_doppelganger(title = "exercise3autoplot", autoplot(pred3e.out))
})
test_that("exercise 4 works", {
skip_on_cran()
exercise4.aov <- aov(Yield ~ Block + SeedingRate, data = exercise4)
expect_snapshot_output(anova(exercise4.aov))
expect_equal(anova(exercise4.aov)$`Mean Sq`, c(0.64812028, 0.17470687, 0.13221151))
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise4resplot", resplot(exercise4.aov))
})
test_that("exercise 5 works", {
skip_on_cran()
exercise5.aov <- aov(EarInfect ~ row + col + Treatment, data = exercise5)
expect_snapshot_output(anova(exercise5.aov))
pred5e.out <- multiple_comparisons(exercise5.aov, classify = "Treatment")
expect_equal(pred5e.out$predicted.value, c(31.61, 35.98, 38.95, 43.52, 48.12))
expect_snapshot_output(pred5e.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise5resplot", resplot(exercise5.aov))
vdiffr::expect_doppelganger(title = "exercise5autoplot", autoplot(pred5e.out))
})
test_that("exercise 6 works", {
skip_on_cran()
exercise6.aov <- aov(SugarYield ~ row + col + Treatment, data = exercise6)
expect_snapshot_output(anova(exercise6.aov))
pred6e.out <- multiple_comparisons(exercise6.aov, classify = "Treatment")
expect_equal(pred6e.out$predicted.value, c(16.01, 17.51, 21.40, 24.39))
expect_snapshot_output(pred6e.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise6resplot", resplot(exercise6.aov))
vdiffr::expect_doppelganger(title = "exercise6autoplot", autoplot(pred6e.out))
})
test_that("exercise 7 works", {
skip_on_cran()
skip_if_not_installed("asreml")
exercise7.asr <- asreml::asreml(AverageFruitSize ~ Variety, random = ~ Replicate,
residual = ~ id(Plot), data = exercise3, trace = FALSE)
expect_snapshot_output(print.data.frame(asreml::wald(exercise7.asr, denDF = "default")$Wald))
pred7e.out <- multiple_comparisons(exercise7.asr, classify = "Variety")
expect_equal(pred7e.out$predicted.value, c(2.84, 2.86, 3.08, 4.70, 4.78, 4.96, 8.88))
expect_snapshot_output(pred7e.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise7resplot", resplot(exercise7.asr))
vdiffr::expect_doppelganger(title = "exercise7autoplot", autoplot(pred7e.out))
})
test_that("exercise 8 works", {
skip_on_cran()
skip_if_not_installed("asreml")
exercise8.asr <- asreml::asreml(Yield ~ SeedingRate, random = ~ Block,
residual = ~ id(Plot), data = exercise4, trace = FALSE)
expect_equal(asreml::wald(exercise8.asr, denDF = "default")$Wald$Pr[2], 0.30758014, tolerance = 0.0001)
expect_snapshot_output(print.data.frame(asreml::wald(exercise8.asr, denDF = "default")$Wald))
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise8resplot", resplot(exercise8.asr))
})
test_that("exercise 9 works", {
skip_on_cran()
skip_if_not_installed("asreml")
exercise9.asr <- suppressWarnings(asreml::asreml(EarInfect ~ Treatment,
random = ~ row + col,
residual = ~ id(plots),
data = exercise5, trace = FALSE))
expect_snapshot_output(print.data.frame(asreml::wald(exercise9.asr, denDF = "default")$Wald))
pred9e.out <- multiple_comparisons(exercise9.asr, classify = "Treatment")
expect_equal(pred9e.out$predicted.value, c(31.61, 35.98, 38.95, 43.52, 48.12))
expect_snapshot_output(pred9e.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise9resplot", resplot(exercise9.asr))
vdiffr::expect_doppelganger(title = "exercise9autoplot", autoplot(pred9e.out))
})
test_that("exercise 10 works", {
skip_on_cran()
skip_if_not_installed("asreml")
exercise10.asr <- suppressWarnings(asreml::asreml(SugarYield ~ Treatment,
random = ~ row + col,
residual = ~ plots,
data = exercise6, trace = FALSE))
expect_snapshot_output(print.data.frame(asreml::wald(exercise10.asr, denDF = "default")$Wald))
pred10e.out <- multiple_comparisons(exercise10.asr, classify = "Treatment")
expect_equal(pred10e.out$predicted.value, c(16.01, 17.51, 21.40, 24.39))
expect_snapshot_output(pred10e.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise10resplot", resplot(exercise10.asr))
vdiffr::expect_doppelganger(title = "exercise10autoplot", autoplot(pred10e.out))
})
test_that("exercise 11 works", {
skip_on_cran()
skip_if_not_installed("asreml")
exercise11.asr <- asreml::asreml(Yield ~ Genotype + Nitrogen + Genotype:Nitrogen,
random = ~ Block + Block:WholePlot,
residual= ~ units,
data = exercise11, trace = FALSE)
expect_snapshot_output(print.data.frame(asreml::wald(exercise11.asr, denDF = "default")$Wald))
pred11e.out1 <- multiple_comparisons(exercise11.asr, classify = "Genotype")
expect_equal(pred11e.out1$predicted.value, c(97.68, 104.89, 109.35))
pred11e.out2 <- multiple_comparisons(exercise11.asr, classify = "Nitrogen")
expect_equal(pred11e.out2$predicted.value, c(79.39, 98.89, 114.22, 123.39))
expect_snapshot_output(pred11e.out1)
expect_snapshot_output(pred11e.out2)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise11resplot", resplot(exercise11.asr))
vdiffr::expect_doppelganger(title = "exercise11autoplot1", autoplot(pred11e.out1))
vdiffr::expect_doppelganger(title = "exercise11autoplot2", autoplot(pred11e.out2))
})
test_that("exercise 12 works", {
skip_on_cran()
skip_if_not_installed("asreml")
exercise12.asr <- asreml::asreml(Yield ~ Variety * Irrigation,
random = ~ Block + Block:WholePlot,
residual = ~ units,
data = exercise12, trace = FALSE)
expect_snapshot_output(print.data.frame(asreml::wald(exercise12.asr, denDF = "default")$Wald))
pred12e.out <- multiple_comparisons(exercise12.asr, classify = "Variety:Irrigation")
expect_equal(pred12e.out$predicted.value,
c(4.61, 5.47, 5.91, 6.19, 6.43, 6.92, 7.02, 7.68, 7.7, 7.75))
expect_snapshot_output(pred12e.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise12resplot", resplot(exercise12.asr))
vdiffr::expect_doppelganger(title = "exercise12autoplot", autoplot(pred12e.out))
})
test_that("exercise 13 works", {
skip_on_cran()
skip_if_not_installed("asreml")
exercise13.asr <- suppressWarnings(asreml::asreml(Yield ~ Genotype + Nitrogen + Genotype:Nitrogen,
random = ~ Block + Block:WholePlot,
residual = ~ id(Column):ar1(Row),
data = exercise13, trace = FALSE))
expect_snapshot_output(print.data.frame(asreml::wald(exercise13.asr, denDF = "default")$Wald, digits = 3))
logl.tab <- logl_test(model.obj = exercise13.asr,
rand.terms = NULL,
resid.terms = "ar1(Row)")
expect_equal(logl.tab$LogLRT.pvalue, "0.221")
pred13e.out1 <- multiple_comparisons(exercise13.asr, classify = "Genotype")
expect_equal(pred13e.out1$predicted.value, c(97.41, 104.31, 110.07))
expect_snapshot_output(pred13e.out1)
pred13e.out2 <- multiple_comparisons(exercise13.asr, classify = "Nitrogen")
expect_equal(pred13e.out2$predicted.value, c(79.44, 98.82, 114.08, 123.37))
expect_snapshot_output(pred13e.out2)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise13resplot", resplot(exercise13.asr))
vdiffr::expect_doppelganger(title = "exercise13autoplot1", autoplot(pred13e.out1))
vdiffr::expect_doppelganger(title = "exercise13autoplot2", autoplot(pred13e.out2))
skip_on_os(c("windows", "mac"))
vdiffr::expect_doppelganger(title = "exercise13variogram", variogram(exercise13.asr))
})
test_that("exercise 14 works", {
skip_on_cran()
skip_if_not_installed("asreml")
exercise14.asr <- suppressWarnings(asreml::asreml(Yield ~ Genotype,
random = ~ Block,
residual = ~ id(Column):ar1(Row),
data = exercise14, trace = FALSE))
expect_snapshot_output(print.data.frame(asreml::wald(exercise14.asr, denDF = "default")$Wald))
logl.tab <- logl_test(model.obj = exercise14.asr,
rand.terms = NULL,
resid.terms = "ar1(Row)")
expect_equal(logl.tab$LogLRT.pvalue, "<0.001")
pred14e.out <- multiple_comparisons(exercise14.asr, classify = "Genotype")
expect_equal(pred14e.out$predicted.value,
c(3.68, 3.79, 3.9, 3.91, 3.92, 3.96, 3.96,
3.98, 3.98, 4.02, 4.03, 4.04, 4.06, 4.06,
4.06, 4.07, 4.12, 4.13, 4.13, 4.15, 4.15,
4.15, 4.16, 4.16, 4.18, 4.18, 4.19, 4.19,
4.2, 4.21, 4.22, 4.23, 4.26, 4.27, 4.31,
4.31, 4.33, 4.33, 4.33, 4.34, 4.36, 4.36,
4.38, 4.38, 4.41, 4.42, 4.43, 4.43, 4.49, 4.52))
expect_snapshot_output(pred14e.out)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise14resplot", resplot(exercise14.asr))
vdiffr::expect_doppelganger(title = "exercise14autoplot", autoplot(pred14e.out))
skip_on_os(c("windows", "mac"))
vdiffr::expect_doppelganger(title = "exercise14variogram", variogram(exercise14.asr))
})
test_that("exercise 15 works", {
skip_on_cran()
skip_if_not_installed("asreml")
exercise15.asr <- asreml::asreml(loginf ~ Control + Season + Rate + Season:Rate,
residual = ~ ar1(col):id(row),
data = exercise15, trace = FALSE)
expect_snapshot_output(print.data.frame(asreml::wald(exercise15.asr, denDF = "default")$Wald))
logl.tab <- logl_test(model.obj = exercise15.asr,
rand.terms = NULL,
resid.terms = "ar1(col)")
expect_equal(logl.tab$LogLRT.pvalue, "0.156")
pred15e.out1 <- multiple_comparisons(exercise15.asr, classify = "Control",
present = c("Control", "Rate", "Season"))
expect_equal(pred15e.out1$predicted.value, c(2.37, 3.06))
expect_snapshot_output(pred15e.out1)
pred15e.out2 <- multiple_comparisons(exercise15.asr, classify = "Rate",
present = c("Control", "Rate", "Season"))
expect_equal(pred15e.out2$predicted.value, c(1.99, 2.48, 2.62, 3.06))
expect_snapshot_output(pred15e.out2)
pred15e.out3 <- multiple_comparisons(exercise15.asr, classify = "Season",
present = c("Control", "Rate", "Season"))
expect_equal(pred15e.out3$predicted.value, c(2.14, 2.59, 3.06))
expect_snapshot_output(pred15e.out3)
skip_on_ci()
skip_on_covr()
skip_if(packageVersion("grid") < "4.2.1")
vdiffr::expect_doppelganger(title = "exercise15resplot", resplot(exercise15.asr))
vdiffr::expect_doppelganger(title = "exercise15autoplot1", autoplot(pred15e.out1))
vdiffr::expect_doppelganger(title = "exercise15autoplot2", autoplot(pred15e.out2))
vdiffr::expect_doppelganger(title = "exercise15autoplot3", autoplot(pred15e.out3))
skip_on_os(c("windows", "mac"))
vdiffr::expect_doppelganger(title = "exercise15variogram", variogram(exercise15.asr))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.