Description Usage Arguments Details Value Warning Author(s) References See Also Examples
A heuristic method to perform spatial predictions. The method consists of a local interpolator with stochastic features. It allows to build effective detailed maps and to estimate the spatial dependence without any assumptions on the spatial process.
1 | spatialpred(coords, data, grid)
|
coords |
a data frame or numeric matrix containing columns with geographic coordinates |
data |
a numeric vector of compatible dimension with |
grid |
a data frame or numeric matrix containing columns with geographic coordinates where |
If grid
receives the same input as coords
, spatialpred
will calculate the Percenntual Absolute Mean Error (PAME) of predictions.
A data.frame containing spatial predictions, standard errors, the radius and the number of observations used in each prediction over the grid.
Depending on the dimension of coords
and/or grid
, spatialpred()
can be time demanding.
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
Da Silva, A.R., Silva, A.P.A., Tiago-Neto, L.J. (2020) A new local stochastic method for predicting data with spatial heterogeneity. ACTA SCIENTIARUM-AGRONOMY, 43:e49947.
1 2 3 4 5 6 7 | # data(moco)
# p <- spatialpred(coords = moco[, 1:2], data = rnorm(206), grid = moco[, 1:2])
# note: using coords as grid to calculate PAME
# head(p)
# lattice::levelplot(pred ~ Lat*Lon, data = p)
# End (not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.