Description Usage Arguments Details References Examples
Computes the logistic deviate L, the exponent of negative L, the denominator, and the value of probability of correct response for each of seven ability levels evenly spaced from -3 to +3 under the one-, two-, or three-parameter logistic item characteristic curve model.
1 |
b |
a single number representing the value of item difficulty. |
a |
a single number representing the value of item discrimination. |
c |
a single number representing the value of lower asymptote. |
While the theoretical range of ability is from negative infinity to positive
infinity, practical considerations usually limit the range of values
from -3 to +3.
Under the one-parameter logistic model, a = 1
and c = 0
.
Under the two-parameter logistic model, c = 0
.
The parameter c
has a theoretical range from 0 to 1, but in practice
values above .35 are not considered acceptable, hence use the range from 0
to .35 for c
.
Baker, F. B., & Kim, S.-H. (2017). The basics of item response theory using R. New York, NY: Springer. ISBN-13: 978-3-319-54204-1
1 2 3 4 |
theta L expnl opexpnl P
1 -3 -5.85 347.2343805 348.234380 0.2022973
2 -2 -4.55 94.6324083 95.632408 0.2083654
3 -1 -3.25 25.7903399 26.790340 0.2298615
4 0 -1.95 7.0286876 8.028688 0.2996427
5 1 -0.65 1.9155408 2.915541 0.4743916
6 2 0.65 0.5220458 1.522046 0.7256084
7 3 1.95 0.1422741 1.142274 0.9003573
theta L expnl opexpnl P
1 -3 -5.85 347.2343805 348.234380 0.2022973
2 -2 -4.55 94.6324083 95.632408 0.2083654
3 -1 -3.25 25.7903399 26.790340 0.2298615
4 0 -1.95 7.0286876 8.028688 0.2996427
5 1 -0.65 1.9155408 2.915541 0.4743916
6 2 0.65 0.5220458 1.522046 0.7256084
7 3 1.95 0.1422741 1.142274 0.9003573
theta L expnl opexpnl P
1 -3 -4 54.5981500 55.598150 0.01798621
2 -2 -3 20.0855369 21.085537 0.04742587
3 -1 -2 7.3890561 8.389056 0.11920292
4 0 -1 2.7182818 3.718282 0.26894142
5 1 0 1.0000000 2.000000 0.50000000
6 2 1 0.3678794 1.367879 0.73105858
7 3 2 0.1353353 1.135335 0.88079708
theta L expnl opexpnl P
1 -3 -2.0 7.3890561 8.389056 0.1192029
2 -2 -1.5 4.4816891 5.481689 0.1824255
3 -1 -1.0 2.7182818 3.718282 0.2689414
4 0 -0.5 1.6487213 2.648721 0.3775407
5 1 0.0 1.0000000 2.000000 0.5000000
6 2 0.5 0.6065307 1.606531 0.6224593
7 3 1.0 0.3678794 1.367879 0.7310586
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.