Nothing
# Package generics
# (c) 2008-2017 Jens Oehlschägel
# Licence: GPL2
# Provided 'as is', use at your own risk
# source("D:/mwp/eanalysis/bit/R/generics.R")
#' Get maxindex (length of boolean vector) and poslength (number of 'selected' elements)
#'
#' For [is.booltype()] objects the term [length()] is ambiguous.
#' For example the length of [which()] corresponds to the sum of [logical()].
#' The generic `maxindex` gives `length(logical)` for all [booltype()]s.
#' The generic `poslength` gives the number of positively selected elements, i.e.
#' `sum(logical)` for all [booltype()]s (and gives `NA` if `NAs` are present).
#'
#' @name maxindex
#' @param x an R object, typically a [is.booltype()] object.
#' @param ... further arguments (ignored)
#' @return an integer scalar
#' @examples
#' r <- ri(1, 2, 12)
#' i <- as.which(r)
#' w <- as.bitwhich(r)
#' b <- as.bit(r)
#' l <- as.logical(r)
#' u <- which(l) # unclassed which
#'
#' sapply(list(r=r, u=u, i=i, w=w, b=b, l=l), function(x) {
#' c(length=length(x), sum=sum(x), maxindex=maxindex(x), poslength=poslength(x))
#' })
#' @export
maxindex <- function(x, ...) UseMethod("maxindex", x)
#' @name maxindex
#' @export
poslength <- function(x, ...) UseMethod("poslength")
#' Coerce to booltype (generic)
#'
#' @param x object to coerce
#' @param booltype target [booltype()] given as integer or as character
#' @param ... further arguments
#'
#' @return `x` coerced to `booltype`
#' @seealso [`CoercionToStandard`][CoercionToStandard], [booltypes()], [booltype()],
#' [is.booltype()]
#'
#' @examples
#' as.booltype(0:1)
#' as.booltype(0:1, "logical")
#' as.booltype(0:1, "bit")
#' as.booltype(0:1, "bitwhich")
#' as.booltype(0:1, "which", maxindex=2)
#' as.booltype(0:1, "ri")
#' @export
as.booltype <- function(x, booltype, ...) UseMethod("as.booltype")
#' Coercing to bit
#'
#' Coercing to bit vector
#'
#' Coercing to bit is quite fast because we use a double loop that fixes each
#' word in a processor register
#'
#' @param x an object of class [bit()], [logical()],
#' [integer()], [bitwhich()] or an integer from
#' [as.which()] or a boolean [`ff`][ff::vmode]
#' @param length the length of the new bit vector
#' @param ... further arguments
#' @return `is.bit` returns FALSE or TRUE, `as.bit` returns a vector
#' of class 'bit'
#' @note Zero is coerced to FALSE, all other numbers including NA are coerced
#' to TRUE. This differs from the NA-to-FALSE coercion in package ff and may
#' change in the future.
#' @author Jens Oehlschlägel
#' @seealso [`CoercionToStandard`][CoercionToStandard], [as.booltype()], [as.bit()],
#' [as.bitwhich()] , [as.which()], [as.ri()], [ff::as.hi()], [ff::as.ff()]
#' @keywords classes logic
#' @examples
#'
#' as.bit(c(FALSE, NA, TRUE))
#'
#' @export
as.bit <- function(x=NULL, ...) UseMethod("as.bit", x)
#' Coercing to bitwhich
#'
#' Functions to coerce to bitwhich
#'
#' @param x An object of class 'bitwhich', 'integer', 'logical' or 'bit' or an
#' integer vector as resulting from 'which'
#' @param maxindex the length of the new bitwhich vector
#' @param poslength the number of selected elements
#' @param range a [ri()] or an integer vector of length == 2 giving a
#' range restriction for chunked processing
#' @param ... further arguments
#' @return a value of class [bitwhich()]
#' @author Jens Oehlschlägel
#' @seealso [`CoercionToStandard`][CoercionToStandard], [as.booltype()], [as.bit()],
#' [as.bitwhich()] , [as.which()], [as.ri()], [ff::as.hi()], [ff::as.ff()]
#' @keywords classes logic
#' @examples
#'
#' as.bitwhich(c(NA, NA, NA))
#' as.bitwhich(c(FALSE, FALSE, FALSE))
#' as.bitwhich(c(FALSE, FALSE, TRUE))
#' as.bitwhich(c(FALSE, TRUE, TRUE))
#' as.bitwhich(c(TRUE, TRUE, TRUE))
#'
#' @export
as.bitwhich <- function(x=NULL, ...) UseMethod("as.bitwhich")
#' Coercion to (positive) integer positions
#'
#' Coercing to something like the result of which [which()]
#'
#' `as.which.bit` returns a vector of subscripts with class 'which'
#'
#' @param x an object of classes [bit()], [bitwhich()],
#' [ri()] or something on which [which()] works
#' @param range a [ri()] or an integer vector of length == 2 giving a
#' range restriction for chunked processing
#' @param maxindex the length of the boolean vector which is represented
#' @param is.unsorted a logical scalar indicating whether the data may be unsorted
#' @param has.dup a logical scalar indicating whether the data may have duplicates
#' @param ... further arguments (passed to [which()] for the
#' default method, ignored otherwise)
#' @return a vector of class 'logical' or 'integer'
#' @author Jens Oehlschlägel
#' @seealso [`CoercionToStandard`][CoercionToStandard], [as.booltype()], [as.bit()],
#' [as.bitwhich()] , [as.which()], [as.ri()], [ff::as.hi()], [ff::as.ff()]
#' @keywords classes logic
#' @examples
#'
#' r <- ri(5, 20, 100)
#' x <- as.which(r)
#' x
#'
#' stopifnot(identical(x, as.which(as.logical(r))))
#' stopifnot(identical(x, as.which(as.bitwhich(r))))
#' stopifnot(identical(x, as.which(as.bit(r))))
#'
#' @export
as.which <- function(x, ...) UseMethod("as.which")
#' Coerce to ri
#'
#' @param x object to coerce
#' @param ... further arguments
#'
#' @return an [ri()] object
#' @author Jens Oehlschlägel
#' @seealso [`CoercionToStandard`][CoercionToStandard], [as.booltype()], [as.bit()],
#' [as.bitwhich()] , [as.which()], [as.ri()], [ff::as.hi()], [ff::as.ff()]
#' @keywords classes logic
#'
#' @examples
#' as.ri(c(FALSE, TRUE, FALSE, TRUE))
#' @export
as.ri <- function(x, ...) UseMethod("as.ri")
#' Boolean operators and functions
#'
#' Boolean NEGATION '!', AND '&', OR '|' and EXCLUSIVE OR xor', see
#' [`Logic`][base::Logic].
#'
#' The binary operators and function `xor` can now combine any [is.booltype()] vectors.
#' They now recycle if vectors have different length. If the two arguments have different
#' [booltypes()] the return value corresponds to the lower [booltype()] of the two.
#'
#' Boolean operations on [bit()] vectors are extremely fast because they are
#' implemented using C's bitwise operators. Boolean operations on or [bitwhich()]
#' vectors are even faster, if they represent very skewed selections.
#'
#' The `xor` function has been made generic and `xor.default` has
#' been implemented much faster than R's standard [xor()].
#' This was possible because actually boolean function `xor` and
#' comparison operator ` != ` do the same (even with NAs), and ` != ` is
#' much faster than the multiple calls in `(x | y) & !(x & y)`
#'
#' @param x a [is.booltype()] vector
#' @param y a [is.booltype()] vector
#' @param e1 a [is.booltype()] vector
#' @param e2 a [is.booltype()] vector
#' @return An object of class [booltype()] or [logical()]
#' @author Jens Oehlschlägel
#' @seealso [booltypes()], [`Logic`][Logic]
#' @keywords classes logic
#' @examples
#'
#' x <- c(FALSE, FALSE, FALSE, NA, NA, NA, TRUE, TRUE, TRUE)
#' y <- c(FALSE, NA, TRUE, FALSE, NA, TRUE, FALSE, NA, TRUE)
#'
#' x | y
#' x | as.bit(y)
#' x | as.bitwhich(y)
#' x | as.which(y)
#' x | ri(1, 1, 9)
#'
#'
#' @export
xor <- function(x, y) UseMethod("xor", x)
#' Physical and virtual attributes
#'
#' Compatibility functions (to package ff) for getting and setting physical and
#' virtual attributes.
#'
#' ff objects have physical and virtual attributes, which have different
#' copying semantics: physical attributes are shared between copies of ff
#' objects while virtual attributes might differ between copies.
#' [ff::as.ram()] will retain some physical and virtual atrributes in
#' the ram clone, such that [ff::as.ff()] can restore an ff object
#' with the same attributes.
#'
#' @name PhysVirt
#' @param x a ff or ram object
#' @param value a list with named elements
#' @param ... further arguments
#' @return `physical` and `virtual` returns a list with named elements
#' @author Jens Oehlschlägel
#' @seealso [ff::physical.ff()], [ff::physical.ffdf()]
#' @keywords IO data attribute
#' @examples
#'
#' physical(bit(12))
#' virtual(bit(12))
NULL
#' @rdname PhysVirt
#' @export
physical <- function(x) UseMethod("physical")
#' @rdname PhysVirt
#' @export
`physical<-` <- function(x, value) UseMethod("physical<-")
#' @rdname PhysVirt
#' @export
virtual <- function(x) UseMethod("virtual")
#' @rdname PhysVirt
#' @export
`virtual<-` <- function(x, value) UseMethod("virtual<-")
#' Generics for in-RAM sorting and ordering
#'
#' These are generic stubs for low-level sorting and ordering methods
#' implemented in packages 'bit64' and 'ff'. The `..sortorder` methods do
#' sorting and ordering at once, which requires more RAM than ordering but is
#' (almost) as fast as as sorting.
#'
#' The `sort` generics do sort their argument 'x', some methods need
#' temporary RAM of the same size as 'x'. The `order` generics do order
#' their argument 'i' leaving 'x' as it was, some methods need temporary RAM of
#' the same size as 'i'. The `sortorder` generics do sort their argument
#' 'x' and order their argument 'i', this way of ordering is much faster at the
#' price of requiring temporary RAM for both, 'x' and 'i', if the method
#' requires temporary RAM. The `ram` generics are high-level functions
#' containing an optimizer that chooses the 'best' algorithms given some
#' context.
#'
#' @name Sorting
#' @param x a vector to be sorted by [ramsort()] and
#' [ramsortorder()], i.e. the output of [sort()]
#' @param i integer positions to be modified by [ramorder()] and
#' [ramsortorder()], default is 1:n, in this case the output is
#' similar to [order()]
#' @param ... further arguments to the sorting methods
#' @return These functions return the number of `NAs` found or assumed
#' during sorting
#' @note Note that these methods purposely violate the functional programming
#' paradigm: they are called for the side-effect of changing some of their
#' arguments. The rationale behind this is that sorting is very RAM-intensive
#' and in certain situations we might not want to allocate additional memory if
#' not necessary to do so. The `sort`-methods change `x`, the
#' `order`-methods change `i`, and the `sortoder`-methods change
#' both `x` and `i` You as the user are responsible to create copies
#' of the input data 'x' and 'i' if you need non-modified versions.
#' @section Index of implemented methods:
#' | **generic** | **ff** | **bit64** |
#' |-----------------:|---------------------------:|:------------------------------------|
#' | `ramsort` | [ff::ramsort.default()] | [bit64::ramsort.integer64()] |
#' | `shellsort` | [ff::shellsort.default()] | [bit64::shellsort.integer64()] |
#' | `quicksort` | | [bit64::quicksort.integer64()] |
#' | `mergesort` | [ff::mergesort.default()] | [bit64::mergesort.integer64()] |
#' | `radixsort` | [ff::radixsort.default()] | [bit64::radixsort.integer64()] |
#' | `keysort` | [ff::keysort.default()] | |
#' | `ramorder` | [ff::ramorder.default()] | [bit64::ramorder.integer64()] |
#' | `shellorder` | [ff::shellorder.default()] | [bit64::shellorder.integer64()] |
#' | `quickorder` | | [bit64::quickorder.integer64()] |
#' | `mergeorder` | [ff::mergeorder.default()] | [bit64::mergeorder.integer64()] |
#' | `radixorder` | [ff::radixorder.default()] | [bit64::radixorder.integer64()] |
#' | `keyorder` | [ff::keyorder.default()] | |
#' | `ramsortorder` | | [bit64::ramsortorder.integer64()] |
#' | `shellsortorder` | | [bit64::shellsortorder.integer64()] |
#' | `quicksortorder` | | [bit64::quicksortorder.integer64()] |
#' | `mergesortorder` | | [bit64::mergesortorder.integer64()] |
#' | `radixsortorder` | | [bit64::radixsortorder.integer64()] |
#' | `keysortorder` | | |
#'
#' @author Jens Oehlschlägel <Jens.Oehlschlaegel@@truecluster.com>
#' @seealso [sort()] and [order()] in base R, [bitsort()] for faster inteer sorting
#' @keywords univar manip arith
NULL
#' @rdname Sorting
#' @export
ramsort <- function(x, ...) UseMethod("ramsort")
#' @rdname Sorting
#' @export
ramorder <- function(x, i, ...) UseMethod("ramorder")
#' @rdname Sorting
#' @export
ramsortorder <- function(x, i, ...) UseMethod("ramsortorder")
#' @rdname Sorting
#' @export
mergesort <- function(x, ...) UseMethod("mergesort")
#' @rdname Sorting
#' @export
mergeorder <- function(x, i, ...) UseMethod("mergeorder")
#' @rdname Sorting
#' @export
mergesortorder <- function(x, i, ...) UseMethod("mergesortorder")
#' @rdname Sorting
#' @export
quicksort <- function(x, ...) UseMethod("quicksort")
#' @rdname Sorting
#' @export
quickorder <- function(x, i, ...) UseMethod("quickorder")
#' @rdname Sorting
#' @export
quicksortorder <- function(x, i, ...) UseMethod("quicksortorder")
#' @rdname Sorting
#' @export
shellsort <- function(x, ...) UseMethod("shellsort")
#' @rdname Sorting
#' @export
shellorder <- function(x, i, ...) UseMethod("shellorder")
#' @rdname Sorting
#' @export
shellsortorder <- function(x, i, ...) UseMethod("shellsortorder")
#' @rdname Sorting
#' @export
radixsort <- function(x, ...) UseMethod("radixsort")
#' @rdname Sorting
#' @export
radixorder <- function(x, i, ...) UseMethod("radixorder")
#' @rdname Sorting
#' @export
radixsortorder <- function(x, i, ...) UseMethod("radixsortorder")
#' @rdname Sorting
#' @export
keysort <- function(x, ...) UseMethod("keysort")
#' @rdname Sorting
#' @export
keyorder <- function(x, i, ...) UseMethod("keyorder")
#' @rdname Sorting
#' @export
keysortorder <- function(x, i, ...) UseMethod("keysortorder")
#' Generics related to cache access
#'
#' These generics are packaged here for methods in packages `bit64` and
#' `ff`.
#'
#' see help of the available methods
#'
#' @name Metadata
#' @param x some object
#' @param value value assigned on responsibility of the user
#' @param ... ignored
#' @return see help of the available methods
#' @author Jens Oehlschlägel <Jens.Oehlschlaegel@@truecluster.com>
#' @seealso [bit64::is.sorted.integer64()], [bit64::na.count.integer64()],
#' [bit64::nvalid.integer64()], [bit64::nunique.integer64()], [bit64::nties.integer64()]
#' @keywords environment methods
#' @examples
#' methods("na.count")
NULL
#' @rdname Metadata
#' @export
is.sorted <- function(x, ...) UseMethod("is.sorted")
#' @rdname Metadata
#' @export
`is.sorted<-` <- function(x, ..., value) UseMethod("is.sorted<-")
#' @rdname Metadata
#' @export
na.count <- function(x, ...) UseMethod("na.count")
#' @rdname Metadata
#' @export
`na.count<-` <- function(x, ..., value) UseMethod("na.count<-")
#' @rdname Metadata
#' @export
nvalid <- function(x, ...) UseMethod("nvalid")
#' @rdname Metadata
#' @export
nunique <- function(x, ...) UseMethod("nunique")
#' @rdname Metadata
#' @export
`nunique<-` <- function(x, ..., value) UseMethod("nunique<-")
#' @rdname Metadata
#' @export
nties <- function(x, ...) UseMethod("nties")
#' @rdname Metadata
#' @export
`nties<-` <- function(x, ..., value) UseMethod("nties<-")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.