Nothing
pointsToFONK <- function(pointls,set_options=FALSE) {
DemographicModel <- blackbox.getOption("DemographicModel")
FONKgNames <- blackbox.getOption("FONKgNames")
ParameterNames <- blackbox.getOption("ParameterNames")
FONKgpointls <- pointls ## copy for modifications. Will write resulting FONKgpointls in global vars
## will be further modified in calcPredictorOK
if ("Migraine" %in% blackbox.getOption("usedBy")) {
if ("IBD" %in% blackbox.getOption("DemographicModel")) {
latt2Ns2pt <- numeric(nrow(FONKgpointls))
latt2Ns2pt <- apply(FONKgpointls[, 1:3], 1, tolatt2Ns2)[2, ]
if("latt2Ns2" %in% FONKgNames) FONKgpointls[, 2] <- latt2Ns2pt ## but otherwise wemay still need it "globally"
if (set_options) blackbox.options(latt2Ns2pt=latt2Ns2pt)
if("condS2" %in% FONKgNames) {
D2bool <- ("2D" %in% blackbox.getOption("DemographicModel"))
FONKgpointls[, 3] <- apply(FONKgpointls[, 3, drop=FALSE], 1, condaxialS2fromg,D2bool=D2bool)
## pas de logscale ici !!
}
} else if ( ("Npop" %in% DemographicModel) || ("IM" %in% DemographicModel) ) {
NMratiopt <- numeric(nrow(FONKgpointls))
NMratiopt <- apply(FONKgpointls[, ParameterNames], 1, toNMratioFromCanonical)
if (set_options) blackbox.options(NMratiopt=NMratiopt)
mratiopt <- numeric(nrow(FONKgpointls))
mratiopt <- apply(FONKgpointls[, ParameterNames], 1, tomratioFromCanonical)
if (set_options) blackbox.options(mratiopt=mratiopt)
m1overmupt <- numeric(nrow(FONKgpointls))
m1overmupt <- apply(FONKgpointls[, ParameterNames], 1, tom1overmuFromCanonical)
if (set_options) blackbox.options(m1overmupt=m1overmupt)
m2overmupt <- numeric(nrow(FONKgpointls))
m2overmupt <- apply(FONKgpointls[, ParameterNames], 1, tom2overmuFromCanonical)
if (set_options) blackbox.options(m2overmupt=m2overmupt)
} else if ( ("OnePopVarSize" %in% DemographicModel) || ("OnePopFounderFlush" %in% DemographicModel) || ("IM" %in% DemographicModel) ) {
Nratiopt <- numeric(nrow(FONKgpointls))
Nratiopt <- apply(FONKgpointls[, ParameterNames], 1, toNratioFromCanonical)
if (set_options) blackbox.options(Nratiopt=Nratiopt)
if ( !("IM" %in% DemographicModel) && ("D" %in% ParameterNames) ) {
Dgmupt <- numeric(nrow(FONKgpointls))
Dgmupt <- apply(FONKgpointls[, ParameterNames], 1, toDgmuFromCanonical)
if (set_options) blackbox.options(Dgmupt=Dgmupt)
}
Tgmupt <- numeric(nrow(FONKgpointls))
Tgmupt <- apply(FONKgpointls[, ParameterNames], 1, toTgmuFromCanonical)
if (set_options) blackbox.options(Tgmupt=Tgmupt)
if ("OnePopFounderFlush" %in% DemographicModel) {
NactNfounderratiopt <- numeric(nrow(FONKgpointls))
NactNfounderratiopt <- apply(FONKgpointls[, ParameterNames], 1, toNactNfounderratioFromCanonical)
if (set_options) blackbox.options(NactNfounderratiopt=NactNfounderratiopt)
NfounderNancratiopt <- numeric(nrow(FONKgpointls))
NfounderNancratiopt <- apply(FONKgpointls[, ParameterNames], 1, toNfounderNancratioFromCanonical)
if (set_options) blackbox.options(NfounderNancratiopt=NfounderNancratiopt)
}
}
}
colnames(FONKgpointls)[seq_len(length(FONKgNames))] <- FONKgNames
if (set_options) {
FONKgLow <- apply(FONKgpointls[, FONKgNames, drop=FALSE], 2, min)
FONKgUp <- apply(FONKgpointls[, FONKgNames, drop=FALSE], 2, max)
blackbox.options(FONKgLow = FONKgLow)
blackbox.options(FONKgUp = FONKgUp)
##Note that FONKgLow/Up will be recomputed one the points have been selected for Kriging
fittedNames <- FONKgNames[which((FONKgUp-FONKgLow)>0.00000001)]
blackbox.options(fittedNames=fittedNames)
blackbox.options(constantNames=FONKgNames %w/o% fittedNames)
blackbox.options(fittedparamnbr=length(fittedNames)) ## variables retained in 'ptls <- FONKgpointls[first:last, fittedNames]' in generatePredictor()
}
for (st in FONKgNames) { ## FONKgScale in iterator bc FONKgScale is used by 'canonizeFromKrig'
## otherwise exp(.) may be returned instead of (.) in (highest lik, new points...) for constant parameters specified as logscale
if(islogscale(st)) {FONKgpointls[, st] <- log(FONKgpointls[, st])}
}
infini <- apply(FONKgpointls, 1, function(v) {any(is.infinite(v))})
if(any(infini)) {
message.redef("infinite values in transformed points. Check input")
message.redef("They will be deleted in further computations.")
print(FONKgpointls[infini, ])
FONKgpointls <- FONKgpointls[!infini, ]
}
if (set_options) {
#blackbox.options(maxobsFONKy = min(FONKgpointls[, blackbox.getOption("ycolname")]))## will be used in pointfromR ... ugly coding
blackbox.options(FONKgpointls = FONKgpointls) ##
}
invisible(FONKgpointls)
}
fromCanonToFONK <- function(pointsNonL) {
DemographicModel <- blackbox.getOption("DemographicModel")
FONKgNames <- blackbox.getOption("FONKgNames")
ParameterNames <- blackbox.getOption("ParameterNames")
FONKgpointls <- pointsNonL ## copy for modifications. Will write resulting FONKgpointls in global vars
## will be further modified in calcPredictorOK
if ("Migraine" %in% blackbox.getOption("usedBy")) {
if ("IBD" %in% blackbox.getOption("DemographicModel")) {
latt2Ns2pt <- numeric(nrow(FONKgpointls))
latt2Ns2pt <- apply(FONKgpointls[, 1:3], 1, tolatt2Ns2)[2, ]
if("latt2Ns2" %in% FONKgNames) FONKgpointls[, 2] <- latt2Ns2pt ## but otherwise wemay still need it "globally"
if("condS2" %in% FONKgNames) {
D2bool <- ("2D" %in% blackbox.getOption("DemographicModel"))
FONKgpointls[, 3] <- apply(FONKgpointls[, 3, drop=FALSE], 1, condaxialS2fromg,D2bool=D2bool)
## pas de logscale ici !!
}
} else if ( ("Npop" %in% DemographicModel) || ("IM" %in% DemographicModel) ) {
NMratiopt <- numeric(nrow(FONKgpointls))
NMratiopt <- apply(FONKgpointls[, ParameterNames], 1, toNMratioFromCanonical)
mratiopt <- numeric(nrow(FONKgpointls))
mratiopt <- apply(FONKgpointls[, ParameterNames], 1, tomratioFromCanonical)
m1overmupt <- numeric(nrow(FONKgpointls))
m1overmupt <- apply(FONKgpointls[, ParameterNames], 1, tom1overmuFromCanonical)
m2overmupt <- numeric(nrow(FONKgpointls))
m2overmupt <- apply(FONKgpointls[, ParameterNames], 1, tom2overmuFromCanonical)
} else if ( ("OnePopVarSize" %in% DemographicModel) || ("OnePopFounderFlush" %in% DemographicModel) || ("IM" %in% DemographicModel) ) {
Nratiopt <- numeric(nrow(FONKgpointls))
Nratiopt <- apply(FONKgpointls[, ParameterNames], 1, toNratioFromCanonical)
if ( !("IM" %in% DemographicModel) && ("D" %in% ParameterNames) ) {
Dgmupt <- numeric(nrow(FONKgpointls))
Dgmupt <- apply(FONKgpointls[, ParameterNames], 1, toDgmuFromCanonical)
}
Tgmupt <- numeric(nrow(FONKgpointls))
Tgmupt <- apply(FONKgpointls[, ParameterNames], 1, toTgmuFromCanonical)
if ("OnePopFounderFlush" %in% DemographicModel) {
NactNfounderratiopt <- numeric(nrow(FONKgpointls))
NactNfounderratiopt <- apply(FONKgpointls[, ParameterNames], 1, toNactNfounderratioFromCanonical)
NfounderNancratiopt <- numeric(nrow(FONKgpointls))
NfounderNancratiopt <- apply(FONKgpointls[, ParameterNames], 1, toNfounderNancratioFromCanonical)
}
}
}
colnames(FONKgpointls)[seq_len(length(FONKgNames))] <- FONKgNames
for (st in FONKgNames) {if(islogscale(st)) {FONKgpointls[, st] <- log(FONKgpointls[, st])} }
infini <- apply(FONKgpointls, 1, function(v) {any(is.infinite(v))})
if(any(infini)) {
message.redef("infinite values in transformed points. Check input")
message.redef("They will be deleted in further computations.")
print(FONKgpointls[infini, ])
FONKgpointls <- FONKgpointls[!infini, ]
}
invisible(FONKgpointls)
} ## nonL en fait
# pointls would need attributes usedBy, DemographicModel, FONKgNames, ParameterNames, ycolnames
buildFONKgpointls <- function(pointls) {pointsToFONK(pointls, set_options=TRUE)}
fromCanonToFONK <- function(pointls) {pointsToFONK(pointls, set_options=FALSE)}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.