dpriors: Specify Default Prior Distributions

View source: R/dpriors.R

dpriorsR Documentation

Specify Default Prior Distributions

Description

Specify "default" prior distributions for classes of model parameters.

Usage

dpriors(..., target = "stan")

Arguments

...

Parameter names paired with desired priors (see example below).

target

Are the priors for jags, stan (default), or stanclassic?

Details

The prior distributions always use JAGS/Stan syntax and parameterizations. For example, the normal distribution in JAGS is parameterized via the precision, whereas the normal distribution in Stan is parameterized via the standard deviation.

User-specified prior distributions for specific parameters (using the prior() operator within the model syntax) always override prior distributions set using dpriors().

The parameter names are:

  • nu: Observed variable intercept parameters.

  • alpha: Latent variable intercept parameters.

  • lambda: Loading parameters.

  • beta: Regression parameters.

  • itheta: Observed variable precision parameters.

  • ipsi: Latent variable precision parameters.

  • rho: Correlation parameters (associated with covariance parameters).

  • ibpsi: Inverse covariance matrix of blocks of latent variables (used for target="jags").

  • tau: Threshold parameters (ordinal data only).

  • delta: Delta parameters (ordinal data only).

Value

A character vector containing the prior distribution for each type of parameter.

References

Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling in Stan. Journal of Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/.

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

See Also

bcfa, bsem, bgrowth

Examples

dpriors(nu = "normal(0,10)", lambda = "normal(0,1)", rho = "beta(3,3)")

blavaan documentation built on Sept. 11, 2024, 8:37 p.m.