Nothing
## non-CRAN use
# if (!require("survHEhmc")) remotes::install_github('giabaio/survHEhmc')
if (require("survHEhmc")) {
library(survHE)
library(survHEhmc)
# GitHub Actions only allows 2 cores on Windows
options("mc.cores" = 1)
# options(cores = 1)
data("TA174_FCR", package = "blendR")
test_that("different distributions in survHE hmc", {
data_sim <- ext_surv_sim(t_info = 144,
S_info = 0.05,
T_max = 180)
obs_Surv2 <- fit.models(formula = Surv(death_t, death) ~ 1,
data = dat_FCR,
distr = "exponential",
method = "hmc")
blend_interv <- list(min = 48, max = 150)
beta_params <- list(alpha = 3, beta = 3)
# exponential
ext_Surv2 <- fit.models(formula = Surv(time, event) ~ 1,
data = data_sim,
distr = "exponential",
method = "hmc")
expect_type(blendsurv(obs_Surv2, ext_Surv2, blend_interv, beta_params), "list")
# weibull
ext_Surv2 <- fit.models(formula = Surv(time, event) ~ 1,
data = data_sim,
distr = "weibull",
method = "hmc")
suppressWarnings(
expect_type(blendsurv(obs_Surv2, ext_Surv2, blend_interv, beta_params), "list")
)
# gompertz
ext_Surv2 <- fit.models(formula = Surv(time, event) ~ 1,
data = data_sim,
distr = "gompertz",
method = "hmc")
suppressWarnings(
expect_type(blendsurv(obs_Surv2, ext_Surv2, blend_interv, beta_params), "list")
)
# log normal
ext_Surv2 <- fit.models(formula = Surv(time, event) ~ 1,
data = data_sim,
distr = "lognormal",
method = "hmc")
suppressWarnings(
expect_type(blendsurv(obs_Surv2, ext_Surv2, blend_interv, beta_params), "list")
)
# gamma
ext_Surv2 <- fit.models(formula = Surv(time, event) ~ 1,
data = data_sim,
distr = "gamma",
method = "hmc")
suppressWarnings(
expect_type(blendsurv(obs_Surv2, ext_Surv2, blend_interv, beta_params), "list")
)
# log logistic
ext_Surv2 <- fit.models(formula = Surv(time, event) ~ 1,
data = data_sim,
distr = "loglogistic",
method = "hmc")
suppressWarnings(
expect_type(blendsurv(obs_Surv2, ext_Surv2, blend_interv, beta_params), "list")
)
})
test_that("user-supplied time points for survival distribution", {
data_sim <- ext_surv_sim(t_info = 144,
S_info = 0.05,
T_max = 180)
obs_Surv2 <- fit.models(formula = Surv(death_t, death) ~ 1,
data = dat_FCR,
distr = "exponential",
method = "hmc")
blend_interv <- list(min = 48, max = 150)
beta_params <- list(alpha = 3, beta = 3)
ext_Surv2 <- fit.models(formula = Surv(time, event) ~ 1,
data = data_sim,
distr = "exponential",
method = "hmc")
expect_type(blendsurv(obs_Surv2, ext_Surv2, blend_interv, beta_params, times = 0:100), "list")
expect_type(blendsurv(obs_Surv2, ext_Surv2, blend_interv, beta_params, times = -100:100), "list")
expect_type(blendsurv(obs_Surv2, ext_Surv2, blend_interv, beta_params, times = seq(0, 100, by = 0.5)), "list")
expect_type(blendsurv(obs_Surv2, ext_Surv2, blend_interv, beta_params, times = 0:300), "list")
expect_type(blendsurv(obs_Surv2, ext_Surv2, blend_interv, beta_params, times = seq(0, 300, by = 0.5)), "list")
## INLA
obs_Surv_inla <- fit_inla_pw(data = dat_FCR,
cutpoints = seq(0, 180, by = 5),
num.threads = 2)
expect_type(blendsurv(obs_Surv_inla, ext_Surv2, blend_interv, beta_params, times = 0:100), "list")
expect_type(blendsurv(obs_Surv_inla, ext_Surv2, blend_interv, beta_params, times = seq(0, 100, by = 0.5)), "list")
expect_type(blendsurv(obs_Surv_inla, ext_Surv2, blend_interv, beta_params, times = 0:300), "list")
expect_type(blendsurv(obs_Surv_inla, ext_Surv2, blend_interv, beta_params, times = seq(0, 300, by = 0.5)), "list")
# # error
# xx <- blendsurv(obs_Surv_inla, ext_Surv2, blend_interv, beta_params, times = -100:100)
# flexsurv
ext_Surv_flex <- flexsurv::flexsurvreg(formula = Surv(time, event) ~ 1,
data = data_sim,
dist = "gompertz")
expect_type(blendsurv(obs_Surv2, ext_Surv_flex, blend_interv, beta_params, times = 0:100), "list")
expect_type(blendsurv(obs_Surv2, ext_Surv_flex, blend_interv, beta_params, times = -100:100), "list")
expect_type(blendsurv(obs_Surv2, ext_Surv_flex, blend_interv, beta_params, times = seq(0, 100, by = 0.5)), "list")
expect_type(blendsurv(obs_Surv2, ext_Surv_flex, blend_interv, beta_params, times = 0:300), "list")
expect_type(blendsurv(obs_Surv2, ext_Surv_flex, blend_interv, beta_params, times = seq(0, 300, by = 0.5)), "list")
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.