Description Usage Arguments Details Value References
Define the priors parameters to be used with ltm_mcmc()
.
1 2 | create_prior_parameters(a_mu0 = 0, a_s0 = 0.1, n0 = 6, S0 = 0.06,
v0 = 6, V0 = 0.06, m0 = 0, s0 = 1, a0 = 20, b0 = 1.5)
|
a_mu0 |
mean of alpha normal distribution. |
a_s0 |
standard deviation of alpha's normal distribution. |
n0 |
sig2 inverse gamma shape parameter. |
S0 |
sig2 inverse gamma location parameter. |
v0 |
sig_eta inverse gamma shape parameter. |
V0 |
sig_eta inverse gamma location parameter. |
m0 |
mu normal's mean parameter. |
s0 |
mu normals standard deviation. |
a0 |
a0 beta's shape parameter. |
b0 |
a0 beta's location parameter. |
Considering the following priors:
alpha ~ N(mu0, s0)
sig2 ~ IG(n0/2, S0/2)
sig_eta ~ IG(v0/2, V0/2)
mu ~ N(m0, s0^2)
(phi+1)/2 ~ Beta(a0, b0)
List containing the hyperparameters used to fit the model. The default parameters are the same of the simulation example of the paper.
Nakajima, Jouchi, and Mike West. "Bayesian analysis of latent threshold dynamic models." Journal of Business & Economic Statistics 31.2 (2013): 151-164.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.