Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(boostingDEA)
set.seed(1234)
## -----------------------------------------------------------------------------
data(banks)
banks
## -----------------------------------------------------------------------------
x <- 1:3
y <- 6
DEA_model <- DEA(banks,x,y)
pred_DEA <- predict(DEA_model, banks, x, y)
pred_DEA
## -----------------------------------------------------------------------------
x <- 1:3
y <- 6
FDH_model <- FDH(banks,x,y)
pred_FDH <- predict(FDH_model, banks, x, y)
pred_FDH
## ---- eval = FALSE------------------------------------------------------------
# x <- 1:3
# y <- 4:5
# EATBoost_model <- EATBoost(banks, x, y,
# num.iterations = 4,
# num.leaves = 4,
# learning.rate = 0.6)
## ----bestEATBoost-------------------------------------------------------------
N <- nrow(banks)
x <- 1:3
y <- 4:5
selected <- sample(1:N, N * 0.8) # Training indexes
training <- banks[selected, ] # Training set
test <- banks[- selected, ] # Test set
grid_EATBoost <- bestEATBoost(training, test, x, y,
num.iterations = c(5,6,7),
learning.rate = c(0.4, 0.5, 0.6),
num.leaves = c(6,7,8),
verbose = FALSE)
head(grid_EATBoost)
## -----------------------------------------------------------------------------
EATboost_model_tuned <- EATBoost(banks, x, y,
num.iterations = grid_EATBoost[1, "num.iterations"],
learning.rate = grid_EATBoost[1, "learning.rate"],
num.leaves = grid_EATBoost[1, "num.leaves"])
pred_EATBoost <- predict(EATboost_model_tuned, banks, x)
pred_EATBoost
## ---- eval = FALSE------------------------------------------------------------
# x <- 1:3
# y <- 6
# MARSBoost_model <- MARSBoost(banks, x, y,
# num.iterations = 4,
# learning.rate = 0.6,
# num.terms = 4)
## ----bestMARSBoost------------------------------------------------------------
N <- nrow(banks)
x <- 1:3
y <- 6
selected <- sample(1:N, N * 0.8) # Training indexes
training <- banks[selected, ] # Training set
test <- banks[- selected, ] # Test set
grid_MARSBoost <- bestMARSBoost(training, test, x, y,
num.iterations = c(5,6,7),
learning.rate = c(0.4, 0.5, 0.6),
num.terms = c(6,7,8),
verbose = FALSE)
head(grid_MARSBoost)
## -----------------------------------------------------------------------------
MARSBoost_model_tuned <- MARSBoost(banks, x, y,
num.iterations = grid_MARSBoost[1, "num.iterations"],
learning.rate = grid_MARSBoost[1, "learning.rate"],
num.terms = grid_MARSBoost[1, "num.terms"])
pred_MARSBoost <- predict(MARSBoost_model_tuned, banks, x)
pred_MARSBoost
## -----------------------------------------------------------------------------
x <- 1:3
y <- 6
efficiency(DEA_model,
measure = "rad.in",
banks, x, y)
## -----------------------------------------------------------------------------
efficiency(FDH_model,
measure = "WAM",
weights = "RAM",
banks, x, y)
## -----------------------------------------------------------------------------
x <- 1:3
y <- 4:5
efficiency(EATboost_model_tuned,
measure = "Russell.out",
heuristic = FALSE,
banks, x, y)
## -----------------------------------------------------------------------------
efficiency(EATboost_model_tuned,
measure = "Russell.out",
banks, x, y,
heuristic = TRUE)
## -----------------------------------------------------------------------------
efficiency(MARSBoost_model_tuned, "rad.out", banks, x, 6)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.