Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, include=FALSE-----------------------------------------------------
library(boostmath)
## -----------------------------------------------------------------------------
# Arcsine distribution with default parameters
dist <- arcsine_distribution()
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
arcsine_pdf(0.5)
arcsine_lpdf(0.5)
arcsine_cdf(0.5)
arcsine_lcdf(0.5)
arcsine_quantile(0.5)
## -----------------------------------------------------------------------------
# Bernoulli distribution with p_success = 0.5
dist <- bernoulli_distribution(0.5)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
bernoulli_pdf(1, 0.5)
bernoulli_lpdf(1, 0.5)
bernoulli_cdf(1, 0.5)
bernoulli_lcdf(1, 0.5)
bernoulli_quantile(0.5, 0.5)
## -----------------------------------------------------------------------------
# Beta distribution with shape parameters alpha = 2, beta = 5
dist <- beta_distribution(2, 5)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
beta_pdf(0.5, 2, 5)
beta_lpdf(0.5, 2, 5)
beta_cdf(0.5, 2, 5)
beta_lcdf(0.5, 2, 5)
beta_quantile(0.5, 2, 5)
## -----------------------------------------------------------------------------
# Binomial dist ribution with n = 10, prob = 0.5
dist <- binomial_distribution(10, 0.5)
# Apply generic functions
cdf(dist, 2)
logcdf(dist, 2)
pdf(dist, 2)
logpdf(dist, 2)
hazard(dist, 2)
chf(dist, 2)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
binomial_pdf(3, 10, 0.5)
binomial_lpdf(3, 10, 0.5)
binomial_cdf(3, 10, 0.5)
binomial_lcdf(3, 10, 0.5)
binomial_quantile(0.5, 10, 0.5)
## -----------------------------------------------------------------------------
# Cauchy distribution with location = 0, scale = 1
dist <- cauchy_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
support(dist)
# Convenience functions
cauchy_pdf(0)
cauchy_lpdf(0)
cauchy_cdf(0)
cauchy_lcdf(0)
cauchy_quantile(0.5)
## -----------------------------------------------------------------------------
# Chi-Squared distribution with 3 degrees of freedom
dist <- chi_squared_distribution(3)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
chi_squared_pdf(2, 3)
chi_squared_lpdf(2, 3)
chi_squared_cdf(2, 3)
chi_squared_lcdf(2, 3)
chi_squared_quantile(0.5, 3)
## -----------------------------------------------------------------------------
# Exponential distribution with rate parameter lambda = 2
dist <- exponential_distribution(2)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
exponential_pdf(1, 2)
exponential_lpdf(1, 2)
exponential_cdf(1, 2)
exponential_lcdf(1, 2)
exponential_quantile(0.5, 2)
## -----------------------------------------------------------------------------
# Extreme Value distribution with location = 0, scale = 1
dist <- extreme_value_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
extreme_value_pdf(0)
extreme_value_lpdf(0)
extreme_value_cdf(0)
extreme_value_lcdf(0)
extreme_value_quantile(0.5)
## -----------------------------------------------------------------------------
# Fisher F distribution with df1 = 5, df2 = 10
dist <- fisher_f_distribution(5, 10)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
fisher_f_pdf(1, 5, 10)
fisher_f_lpdf(1, 5, 10)
fisher_f_cdf(1, 5, 10)
fisher_f_lcdf(1, 5, 10)
fisher_f_quantile(0.5, 5, 10)
## -----------------------------------------------------------------------------
# Gamma distribution with shape = 3, scale = 4
dist <- gamma_distribution(3, 4)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
gamma_pdf(2, 3, 4)
gamma_lpdf(2, 3, 4)
gamma_cdf(2, 3, 4)
gamma_lcdf(2, 3, 4)
gamma_quantile(0.5, 3, 4)
## -----------------------------------------------------------------------------
# Geometric distribution with probability of success prob = 0.5
dist <- geometric_distribution(0.5)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
geometric_pdf(3, 0.5)
geometric_lpdf(3, 0.5)
geometric_cdf(3, 0.5)
geometric_lcdf(3, 0.5)
geometric_quantile(0.5, 0.5)
## -----------------------------------------------------------------------------
# Holtsmark distribution with location 0 and scale 1
dist <- holtsmark_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
# Convenience functions
holtsmark_pdf(3)
holtsmark_lpdf(3)
holtsmark_cdf(3)
holtsmark_lcdf(3)
holtsmark_quantile(0.5)
## -----------------------------------------------------------------------------
# Hyperexponential distribution with probabilities = c(0.5, 0.5) and rates = c(1, 2)
dist <- hyperexponential_distribution(c(0.5, 0.5), c(1, 2))
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
hyperexponential_pdf(2, c(0.5, 0.5), c(1, 2))
hyperexponential_lpdf(2, c(0.5, 0.5), c(1, 2))
hyperexponential_cdf(2, c(0.5, 0.5), c(1, 2))
hyperexponential_lcdf(2, c(0.5, 0.5), c(1, 2))
hyperexponential_quantile(0.5, c(0.5, 0.5), c(1, 2))
## -----------------------------------------------------------------------------
# Hypergeometric distribution with r = 5, n = 10, N = 20
dist <- hypergeometric_distribution(5, 10, 20)
# Apply generic functions
cdf(dist, 4)
logcdf(dist, 4)
pdf(dist, 4)
logpdf(dist, 4)
hazard(dist, 4)
chf(dist, 4)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
hypergeometric_pdf(3, 5, 10, 20)
hypergeometric_lpdf(3, 5, 10, 20)
hypergeometric_cdf(3, 5, 10, 20)
hypergeometric_lcdf(3, 5, 10, 20)
hypergeometric_quantile(0.5, 5, 10, 20)
## -----------------------------------------------------------------------------
# Inverse Chi-Squared distribution with 10 degrees of freedom, scale = 1
dist <- inverse_chi_squared_distribution(10, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
inverse_chi_squared_pdf(2, 10, 1)
inverse_chi_squared_lpdf(2, 10, 1)
inverse_chi_squared_cdf(2, 10, 1)
inverse_chi_squared_lcdf(2, 10, 1)
inverse_chi_squared_quantile(0.5, 10, 1)
## -----------------------------------------------------------------------------
# Inverse Gamma distribution with shape = 5, scale = 4
dist <- inverse_gamma_distribution(5, 4)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
inverse_gamma_pdf(2, 5, 4)
inverse_gamma_lpdf(2, 5, 4)
inverse_gamma_cdf(2, 5, 4)
inverse_gamma_lcdf(2, 5, 4)
inverse_gamma_quantile(0.5, 5, 4)
## -----------------------------------------------------------------------------
# Inverse Gaussian distribution with mu = 3, lambda = 4
dist <- inverse_gaussian_distribution(3, 4)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
inverse_gaussian_pdf(2, 3, 4)
inverse_gaussian_lpdf(2, 3, 4)
inverse_gaussian_cdf(2, 3, 4)
inverse_gaussian_lcdf(2, 3, 4)
inverse_gaussian_quantile(0.5, 3, 4)
## -----------------------------------------------------------------------------
# Kolmogorov-Smirnov distribution with sample size n = 10
dist <- kolmogorov_smirnov_distribution(10)
# Apply generic functions
cdf(dist, 2)
logcdf(dist, 2)
pdf(dist, 2)
logpdf(dist, 2)
hazard(dist, 2)
chf(dist, 2)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
kolmogorov_smirnov_pdf(0.5, 10)
kolmogorov_smirnov_lpdf(0.5, 10)
kolmogorov_smirnov_cdf(0.5, 10)
kolmogorov_smirnov_lcdf(0.5, 10)
kolmogorov_smirnov_quantile(0.5, 10)
## -----------------------------------------------------------------------------
# Landau distribution with location 0 and scale 1
dist <- landau_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
support(dist)
# Convenience functions
landau_pdf(3)
landau_lpdf(3)
landau_cdf(3)
landau_lcdf(3)
landau_quantile(0.5)
## -----------------------------------------------------------------------------
# Laplace distribution with location = 0, scale = 1
dist <- laplace_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
laplace_pdf(0)
laplace_lpdf(0)
laplace_cdf(0)
laplace_lcdf(0)
laplace_quantile(0.5)
## -----------------------------------------------------------------------------
# Logistic distribution with location = 0, scale = 1
dist <- logistic_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
logistic_pdf(0)
logistic_lpdf(0)
logistic_cdf(0)
logistic_lcdf(0)
logistic_quantile(0.5)
## -----------------------------------------------------------------------------
# Log Normal distribution with location = 0, scale = 1
dist <- lognormal_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
lognormal_pdf(0)
lognormal_lpdf(0)
lognormal_cdf(0)
lognormal_lcdf(0)
lognormal_quantile(0.5)
## -----------------------------------------------------------------------------
# Map-Airy distribution with location 0 and scale 1
dist <- mapairy_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
# Convenience functions
mapairy_pdf(3)
mapairy_lpdf(3)
mapairy_cdf(3)
mapairy_lcdf(3)
mapairy_quantile(0.5)
## -----------------------------------------------------------------------------
# Negative Binomial distribution with successes = 5, success_fraction = 0.5
dist <- negative_binomial_distribution(5, 0.5)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
negative_binomial_pdf(3, 5, 0.5)
negative_binomial_lpdf(3, 5, 0.5)
negative_binomial_cdf(3, 5, 0.5)
negative_binomial_lcdf(3, 5, 0.5)
negative_binomial_quantile(0.5, 5, 0.5)
## -----------------------------------------------------------------------------
# Noncentral Beta distribution with shape parameters alpha = 2, beta = 3
# and noncentrality parameter lambda = 1
dist <- non_central_beta_distribution(2, 3, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
# Convenience functions
non_central_beta_pdf(0.5, 2, 3, 1)
non_central_beta_lpdf(0.5, 2, 3, 1)
non_central_beta_cdf(0.5, 2, 3, 1)
non_central_beta_lcdf(0.5, 2, 3, 1)
non_central_beta_quantile(0.5, 2, 3, 1)
## -----------------------------------------------------------------------------
# Noncentral Chi-Squared distribution with 3 degrees of freedom and noncentrality
# parameter 1
dist <- non_central_chi_squared_distribution(3, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
non_central_chi_squared_pdf(2, 3, 1)
non_central_chi_squared_lpdf(2, 3, 1)
non_central_chi_squared_cdf(2, 3, 1)
non_central_chi_squared_lcdf(2, 3, 1)
non_central_chi_squared_quantile(0.5, 3, 1)
## -----------------------------------------------------------------------------
# Noncentral F distribution with df1 = 10, df2 = 10 and noncentrality
# parameter 1
dist <- non_central_f_distribution(10, 10, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
non_central_f_pdf(1, 5, 2, 1)
non_central_f_lpdf(1, 5, 2, 1)
non_central_f_cdf(1, 5, 2, 1)
non_central_f_lcdf(1, 5, 2, 1)
non_central_f_quantile(0.5, 5, 2, 1)
## -----------------------------------------------------------------------------
# Noncentral T distribution with 5 degrees of freedom and noncentrality parameter 1
dist <- non_central_t_distribution(5, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
non_central_t_pdf(0, 5, 1)
non_central_t_lpdf(0, 5, 1)
non_central_t_cdf(0, 5, 1)
non_central_t_lcdf(0, 5, 1)
non_central_t_quantile(0.5, 5, 1)
## -----------------------------------------------------------------------------
# Normal distribution with mean = 0, sd = 1
dist <- normal_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
normal_pdf(0)
normal_lpdf(0)
normal_cdf(0)
normal_lcdf(0)
normal_quantile(0.5)
## -----------------------------------------------------------------------------
# Pareto distribution with scale = 10, shape = 5
dist <- pareto_distribution(10, 5)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
pareto_pdf(1)
pareto_lpdf(1)
pareto_cdf(1)
pareto_lcdf(1)
pareto_quantile(0.5)
## -----------------------------------------------------------------------------
# Poisson distribution with lambda = 1
dist <- poisson_distribution(1)
# Apply generic functions
cdf(dist, 5)
logcdf(dist, 5)
pdf(dist, 5)
logpdf(dist, 5)
hazard(dist, 5)
chf(dist, 5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
poisson_pdf(0, 1)
poisson_lpdf(0, 1)
poisson_cdf(0, 1)
poisson_lcdf(0, 1)
poisson_quantile(0.5, 1)
## -----------------------------------------------------------------------------
# Rayleigh distribution with sigma = 1
dist <- rayleigh_distribution(1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
rayleigh_pdf(1)
rayleigh_lpdf(1)
rayleigh_cdf(1)
rayleigh_lcdf(1)
rayleigh_quantile(0.5)
## -----------------------------------------------------------------------------
# SaS Point5 distribution with location 0 and scale 1
dist <- saspoint5_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
support(dist)
# Convenience functions
saspoint5_pdf(3)
saspoint5_lpdf(3)
saspoint5_cdf(3)
saspoint5_lcdf(3)
saspoint5_quantile(0.5)
## -----------------------------------------------------------------------------
# Skew Normal distribution with location = 0, scale = 1, shape = 0
dist <- skew_normal_distribution(0, 1, 0)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
skew_normal_pdf(0)
skew_normal_lpdf(0)
skew_normal_cdf(0)
skew_normal_lcdf(0)
skew_normal_quantile(0.5)
## -----------------------------------------------------------------------------
# Student's t distribution with 5 degrees of freedom
dist <- students_t_distribution(5)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
students_t_pdf(0, 5)
students_t_lpdf(0, 5)
students_t_cdf(0, 5)
students_t_lcdf(0, 5)
students_t_quantile(0.5, 5)
## -----------------------------------------------------------------------------
# Triangular distribution with lower = -1, mode = 0, upper = 1
dist <- triangular_distribution(-1, 0, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
triangular_pdf(1)
triangular_lpdf(1)
triangular_cdf(1)
triangular_lcdf(1)
triangular_quantile(0.5)
## -----------------------------------------------------------------------------
# Uniform distribution with lower = 0, upper = 1
dist <- uniform_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
uniform_pdf(0.5)
uniform_lpdf(0.5)
uniform_cdf(0.5)
uniform_lcdf(0.5)
uniform_quantile(0.5)
## -----------------------------------------------------------------------------
# Weibull distribution with shape = 1, scale = 1
dist <- weibull_distribution(1, 1)
# Apply generic functions
cdf(dist, 0.5)
logcdf(dist, 0.5)
pdf(dist, 0.5)
logpdf(dist, 0.5)
hazard(dist, 0.5)
chf(dist, 0.5)
mean(dist)
median(dist)
mode(dist)
range(dist)
quantile(dist, 0.2)
standard_deviation(dist)
support(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
kurtosis_excess(dist)
# Convenience functions
weibull_pdf(1, shape = 1, scale = 1)
weibull_lpdf(1, shape = 1, scale = 1)
weibull_cdf(1, shape = 1, scale = 1)
weibull_lcdf(1, shape = 1, scale = 1)
weibull_quantile(0.5, shape = 1, scale = 1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.