Description Usage Arguments Value References Author(s) Examples
Compute a d
-dimensional kernel density estimate using a back-projected kernel.
1 |
data |
a matrix or data frame. The data is coerced to a numeric matrix using the |
alphas |
a numeric matrix of dimension |
kernel |
a function for evaluating the univariate kernel. |
bw |
the function used to compute the univariate bandwidth estimates. |
score.fun |
the function used to compute the least squares cross-validation score for the kernel; see |
r |
the computations are performed using linear binning and the discrete Fourier transform. The number of the grid points used is 2^r. |
padding |
a postive numeric value specifying the amount of zero-padding in units of bandwidth. |
a list with class c("bpkde", "mvkde")
containing the following elements.
axes |
a numeric matrix whose columns contain the grid points used along each axis to bin the data. |
z |
a numeric array containing the discrete kernel density estimate. |
params |
a list containing the optimal common scaling parameter |
Panaretos, Victor M. and Konis, Kjell (2012). Nonparametric Construction of Multivariate Kernels. Journal of the American Statistical Association 107(499):1085-1095.
Kjell Konis kjell.konis@me.com
1 2 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.