Nothing
#' @title Zurich sample set of 13C breath test data
#'
#' @description 13C time series PDR data from normals and random patients
#' from the division of \href{https://www.usz.ch/fachbereich/gastroenterologie-und-hepatologie/}{Gastroenterology and Hepatology,
#' University Hospital Zurich}.
#' Most breath samples from normals were collected with bags and analyzed by
#' \href{http://kibion.com}{IRIS/Wagner}
#' infrared spectroscopy. Patient samples were recorded with the continuous
#' monitoring system \href{https://www.meridianbioscience.com/}{BreathID}.
#'
#' \describe{
#' \item{patient_id}{Patient identifier, starting with \code{norm} for normals
#' (healthy volunteers) and \code{pat} for patients. Note that for normals
#' there are two records for each subject, so only the combination of patient_id
#' and group is a unique identifier of the time series record.}
#' \item{group}{\code{liquid_normal} for normals and liquid meal,
#' \code{solid_normal} normals and solid meal, and \code{patient} for patients
#' from the University Hospital of Zurich.}
#' \item{minute}{Time in minutes}
#' \item{pdr}{PDR as computed by breathtest device or from dob via function dob_to_pdr}
#' }
#' @docType data
#' @keywords datasets
#' @name usz_13c
#' @usage data(usz_13c)
#' @examples
#' data(usz_13c)
#' \dontrun{
#' str(usz_13c)
#' # Plot all records; this needs some time
#' pdf(file.path(tempdir(), "usz_13c.pdf"), height= 30)
#' # null_fit makes data plotable without fitting a model
#' plot(null_fit(usz_13c))
#' dev.off()
#' }
#' # Plot a subset
#' suppressPackageStartupMessages(library(dplyr))
#' usz_part = usz_13c %>%
#' filter(patient_id %in% c("norm_001","norm_002", "pat_001", "pat_002"))
#' plot(null_fit(usz_part))
#' @format A data frame with 15574 rows and 4 variables
#'
#'
#' @import assertthat
#' @import ggplot2
#' @import stringr
#' @import dplyr
#' @import readr
#' @importFrom broom augment tidy
#' @importFrom MASS mvrnorm
#' @importFrom graphics plot plot.default
#' @importFrom purrr map_df
#' @importFrom stats rt rnorm na.omit rlnorm coef AIC deviance
#' @importFrom utils capture.output
#' @importFrom signal interp1
#' @importFrom methods is
#' @importFrom tibble rownames_to_column as_tibble
#' @importFrom nlme nlme nlmeControl fixef nlsList
NULL
#' @title 13C breath test data with MRI emptying for comparison
#'
#' @description 13C time series PDR data from normals and three different meals
#' in a cross-over design from the division of
#' \href{https://www.usz.ch/fachbereich/gastroenterologie-und-hepatologie/}{Gastroenterology and Hepatology,
#' University Hospital Zurich}. See
#' \href{https://onlinelibrary.wiley.com/doi/abs/10.1111/nmo.12025}{Kuyumcu et al.,
#' Gastric secretion does not affect...}.
#'
#' Data are formatted as described in \code{\link{usz_13c}}. In addition, half
#' emptying times from MRI measurements are attached to the data as attribute
#' \code{mri_t50}. The example below shows how to analyze the data and present half
#' emptying times from MRI and 13C in diagrams.
#'
#'
#' @docType data
#' @keywords datasets
#' @name usz_13c_d
#' @usage data(usz_13c_d)
#' @examples
#' \donttest{
#' library(dplyr)
#' library(ggplot2)
#' data(usz_13c_d)
#' mri_t50 = attr(usz_13c_d, "mri_t50")
#' d = usz_13c_d %>%
#' cleanup_data() %>% # recommended to test for validity
#' nlme_fit()
#' plot(d) +
#' geom_vline(data = mri_t50, aes(xintercept = t50), linetype = 2)
#'
#' # Maes-Ghoos t50
#' dd = mri_t50 %>%
#' inner_join(
#' coef(d) %>% filter(parameter=="t50", method == "maes_ghoos"),
#' by = c("patient_id", "group")) %>%
#' mutate(
#' t50_maes_ghoos = value
#' )
#'
#' ggplot(dd, aes(x=t50, y = t50_maes_ghoos, color = group)) +
#' geom_point() +
#' facet_wrap(~group) +
#' geom_abline(slope = 1, intercept = 0) +
#' xlim(45,205) +
#' ylim(45,205)
#'
#' # Bluck-Coward t50
#' dd = mri_t50 %>%
#' inner_join(
#' coef(d) %>% filter(parameter=="t50", method == "bluck_coward"),
#' by = c("patient_id", "group")) %>%
#' mutate(
#' t50_bluck_coward = value
#' )
#'
#' ggplot(dd, aes(x=t50, y = t50_bluck_coward, color = group)) +
#' geom_point() +
#' facet_wrap(~group) +
#' geom_abline(slope = 1, intercept = 0) +
#' xlim(0,205) +
#' ylim(0,205)
#' }
NULL
#' @title Exotic 13C breath test data
#'
#' @description 13C time series PDR data from three different groups in a randomized
#' (= not-crossover) design. This are unpublished data from
#' \href{https://www.usz.ch/fachbereich/gastroenterologie-und-hepatologie/}{Gastroenterology and Hepatology,
#' University Hospital Zurich}.
#'
#' Data are formatted as described in \code{\link{usz_13c}}. These time series present
#' a challenge for algorithms.
#'
#' @docType data
#' @keywords datasets
#' @name usz_13c_a
#' @usage data(usz_13c_a)
#' @examples
#' \donttest{
#' library(dplyr)
#' library(ggplot2)
#' data(usz_13c_a)
#' d = usz_13c_a %>%
#' cleanup_data() %>% # recommended to test for validity
#' nlme_fit()
#' plot(d)
#' }
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.