Nothing
#' Average Over Posterior Predictions
#'
#' Internal function that averages over posterior predictions
#' using either [rowMeans()] or [rowBootMeans()], the latter
#' being useful to incorporate uncertainty from the
#' inputs being used to generate predictions.
#'
#' @param posterior A posterior matrix type object. It is assumed that different
#' predictions to be averaged over are on different columns. Different posterior
#' draws are on different rows.
#' @param resample An integer indicating the number of
#' bootstrap resamples of the posterior predictions to
#' use when calculating summaries. Defaults to \code{0L}.
#' See the details section for more informations as its implementation
#' is experimental and it may not operate as one would expect.
#' @param seed A seed for random number generation. Defaults to \code{FALSE},
#' which means no seed is set.
#' Only used if \code{resample} is a positive, non-zero integer.
#' @return A vector of the averaged posterior.
#' @keywords internal
.averagePosterior <- function(posterior, resample = 0L, seed = FALSE) {
if (isTRUE(resample == 0)) {
posterior <- rowMeans(posterior, na.rm = TRUE)
} else if (isTRUE(resample > 0)) {
if (!isFALSE(seed)) {
set.seed(seed)
}
yhat <- matrix(NA_real_, nrow = nrow(posterior), ncol = resample)
for (i in seq_len(resample)) {
yhat[, i] <- rowBootMeans(posterior)
}
posterior <- as.vector(yhat)
}
return(posterior)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.