| tidy.MCMCglmm | R Documentation | 
Tidying methods for MCMC (Stan, JAGS, etc.) fits
## S3 method for class 'MCMCglmm'
tidy(x, effects = c("fixed", "ran_pars"), scales = NULL, ...)
tidyMCMC(
  x,
  pars,
  robust = FALSE,
  conf.int = FALSE,
  conf.level = 0.95,
  conf.method = c("quantile", "HPDinterval"),
  drop.pars = c("lp__", "deviance"),
  rhat = FALSE,
  ess = FALSE,
  index = FALSE,
  ...
)
## S3 method for class 'rjags'
tidy(
  x,
  robust = FALSE,
  conf.int = FALSE,
  conf.level = 0.95,
  conf.method = "quantile",
  ...
)
## S3 method for class 'stanfit'
tidy(
  x,
  pars,
  robust = FALSE,
  conf.int = FALSE,
  conf.level = 0.95,
  conf.method = c("quantile", "HPDinterval"),
  drop.pars = c("lp__", "deviance"),
  rhat = FALSE,
  ess = FALSE,
  index = FALSE,
  ...
)
## S3 method for class 'mcmc'
tidy(
  x,
  pars,
  robust = FALSE,
  conf.int = FALSE,
  conf.level = 0.95,
  conf.method = c("quantile", "HPDinterval"),
  drop.pars = c("lp__", "deviance"),
  rhat = FALSE,
  ess = FALSE,
  index = FALSE,
  ...
)
## S3 method for class 'mcmc.list'
tidy(
  x,
  pars,
  robust = FALSE,
  conf.int = FALSE,
  conf.level = 0.95,
  conf.method = c("quantile", "HPDinterval"),
  drop.pars = c("lp__", "deviance"),
  rhat = FALSE,
  ess = FALSE,
  index = FALSE,
  ...
)
x | 
 a model fit to be converted to a data frame  | 
effects | 
 which effects (fixed, random, etc.) to return  | 
scales | 
 scales on which to report results  | 
... | 
 mostly unused; for   | 
pars | 
 (character) specification of which parameters to include  | 
robust | 
 use mean and standard deviation (if FALSE) or median and mean absolute deviation (if TRUE) to compute point estimates and uncertainty?  | 
conf.int | 
 (logical) include confidence interval?  | 
conf.level | 
 probability level for CI  | 
conf.method | 
 method for computing confidence intervals ("quantile" or "HPDinterval")  | 
drop.pars | 
 Parameters not to include in the output (such as log-probability information)  | 
rhat, ess | 
 (logical) include Rhat and/or effective sample size estimates?  | 
index | 
 Add index column, remove index from term. For example,
  | 
if (require("MCMCglmm")) {
  ## original model
  ## Not run: 
      mm0 <- MCMCglmm(Reaction ~ Days,
                 random = ~Subject, data = sleepstudy,
                 nitt=4000,
                 pr = TRUE
             )
   
## End(Not run)
   ## load stored object
   load(system.file("extdata","MCMCglmm_example.rda",
                                     package="broom.mixed"))
   tidy(mm0)
   tidy(mm1)
   tidy(mm2)
   tail(tidy(mm0,effects="ran_vals"))
}
# Using example from "RStan Getting Started"
# https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
model_file <- system.file("extdata", "8schools.stan", package = "broom.mixed")
schools_dat <- list(J = 8,
                    y = c(28,  8, -3,  7, -1,  1, 18, 12),
                    sigma = c(15, 10, 16, 11,  9, 11, 10, 18))
## original model
## Not run: 
    set.seed(2015)
    rstan_example <- rstan::stan(file = model_file, data = schools_dat,
                         iter = 1000, chains = 2, save_dso = FALSE)
## End(Not run)
if (require(rstan)) {
   ## load stored object
   rstan_example <- readRDS(system.file("extdata", "rstan_example.rds", package = "broom.mixed"))
   tidy(rstan_example)
   tidy(rstan_example, conf.int = TRUE, pars = "theta")
   td_mean <- tidy(rstan_example, conf.int = TRUE)
   td_median <- tidy(rstan_example, conf.int = TRUE, robust = TRUE)
   
   if (require(dplyr) && require(ggplot2)) {
       tds <- (dplyr::bind_rows(list(mean=td_mean, median=td_median), .id="method")
          %>% mutate(type=ifelse(grepl("^theta",term),"theta",
            ifelse(grepl("^eta",term),"eta",
                  "other")))
      )
     ggplot(tds, aes(estimate, term)) +
      geom_errorbarh(aes(xmin = conf.low, xmax = conf.high),height=0) +
      geom_point(aes(color = method))+
      facet_wrap(~type,scale="free",ncol=1)
 } ## require(dplyr,ggplot2)
} ## require(rstan)
if (require(R2jags)) {
   ## see help("jags",package="R2jags")
   ## and  example("jags",package="R2jags")
   ## for details
   ## load stored object
   R2jags_example <- readRDS(system.file("extdata", "R2jags_example.rds", package = "broom.mixed"))
   tidy(R2jags_example)
   tidy(R2jags_example, conf.int=TRUE, conf.method="quantile")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.