Description Usage Arguments Value Author(s) References See Also Examples
Performs the EM algorithm for Birnbaum-Saunders model based on Skew-Normal distribution.
| 1 2 | EMbssn(ti,alpha,beta,delta,initial.values=FALSE, loglik=F,accuracy=1e-8,
show.envelope="FALSE",iter.max=500)
 | 
| ti | Vector of observations. | 
| alpha,beta,delta | Initial values. | 
| initial.values | Logical; if TRUE, get the initial values for the parameters. | 
| loglik | Logical; if TRUE, showvalue of the log-likelihood. | 
| accuracy | The convergence maximum error. | 
| show.envelope | Logical; if TRUE, show the simulated envelope for the fitted model. | 
| iter.max | The maximum number of iterations of the EM algorithm | 
The function returns a list with 11 elements detailed as
| iter | Number of iterations. | 
| alpha | Returns the value of the MLE of the shape parameter. | 
| beta | Returns the value of the MLE of the scale parameter. | 
| lambda | Returns the value of the MLE of the skewness parameter. | 
| SE | Standard Errors of the ML estimates. | 
| table | Table containing the ML estimates with the corresponding standard errors. | 
| loglik | Log-likelihood. | 
| AIC | Akaike information criterion. | 
| BIC | Bayesian information criterion. | 
| HQC | Hannan-Quinn information criterion. | 
| time | processing time. | 
Rocio Maehara rmaeharaa@gmail.com and Luis Benites lbenitesanchez@gmail.com
Vilca, Filidor; Santana, L. R.; Leiva, Victor; Balakrishnan, N. (2011). Estimation of extreme percentiles in Birnbaum Saunders distributions. Computational Statistics & Data Analysis (Print), 55, 1665-1678.
Santana, Lucia; Vilca, Filidor; Leiva, Victor (2011). Influence analysis in skew-Birnbaum Saunders regression models and applications. Journal of Applied Statistics, 38, 1633-1649.
bssn, EMbssn, momentsbssn, ozone, reliabilitybssn
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | ## Not run: 
#Using the ozone data
data(ozone)
attach(ozone)
#################################
#The model
 ti        <- dailyozonelevel
#Initial values for the parameters
 initial   <- mmmeth(ti)
 alpha0    <- initial$alpha0ini
 beta0     <- initial$beta0init
 lambda0   <- 0
 delta0    <- lambda0/sqrt(1+lambda0^2)
#Estimated parameters of the model (by default)
 est_param <- EMbssn(ti,alpha0,beta0,delta0,loglik=T,
 accuracy = 1e-8,show.envelope = "TRUE", iter.max=500)
#ML estimates
 alpha     <- est_param$res$alpha
 beta      <- est_param$res$beta
 lambda    <- est_param$res$lambda
#########################################
#A simple output example
---------------------------------------------------------
Birnbaum-Saunders model based on Skew-Normal distribution
---------------------------------------------------------
Observations = 116
-----------
Estimates
-----------
       Estimate Std. Error z value Pr(>|z|)
alpha   1.26014    0.23673 5.32311  0.00000
beta   14.65730    4.01984 3.64624  0.00027
lambda  1.06277    0.54305 1.95706  0.05034
------------------------
Model selection criteria
------------------------
        Loglik   AIC   BIC   HQC
Value -542.768 4.705 4.741 4.719
-------
Details
-------
Iterations = 415
Processing time = 0.4283214 secs
Convergence = TRUE
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.