regression.holiday | R Documentation |
Add a regression-based holiday model to the state specification.
AddRegressionHoliday(
state.specification = NULL,
y,
holiday.list,
time0 = NULL,
prior = NULL,
sdy = sd(as.numeric(y), na.rm = TRUE))
AddHierarchicalRegressionHoliday(
state.specification = NULL,
y,
holiday.list,
coefficient.mean.prior = NULL,
coefficient.variance.prior = NULL,
time0 = NULL,
sdy = sd(as.numeric(y), na.rm = TRUE))
state.specification |
A list of state components that you wish to add to. If omitted, an empty list will be assumed. |
holiday.list |
A list of objects of type |
y |
The time series to be modeled, as a numeric vector
convertible to |
prior |
An object of class |
coefficient.mean.prior |
An object of type
|
coefficient.variance.prior |
An object of type
|
time0 |
An object convertible to |
sdy |
The standard deviation of the series to be modeled. This
will be ignored if |
The model assumes that
y_t = \beta_{d(t)} + \epsilon_t %
The regression state model assumes vector of regression coefficients
\beta
contains elements \beta_d \sim N(0,
\sigma)
.
The HierarchicalRegressionHolidayModel assumes \beta
is
composed of holiday-specific sub-vectors
\beta_h \sim N(b_0, V)
, where each
\beta_h
contains coefficients describing the days in
the influence window of holiday h. The hierarchical version of the
model treats b_0
and V
as parameters to be learned,
with prior distributions
b_0 \sim N(\bar b, \Omega)
and
V \sim IW(\nu, S)
where IW
represents the inverse Wishart distribution.
Returns a list with the elements necessary to specify a local linear trend state model.
Steven L. Scott steve.the.bayesian@gmail.com
Harvey (1990), "Forecasting, structural time series, and the Kalman filter", Cambridge University Press.
Durbin and Koopman (2001), "Time series analysis by state space methods", Oxford University Press.
bsts
.
RandomWalkHolidayStateModel
.
SdPrior
NormalPrior
trend <- cumsum(rnorm(730, 0, .1))
dates <- seq.Date(from = as.Date("2014-01-01"), length = length(trend), by = "day")
y <- zoo(trend + rnorm(length(trend), 0, .2), dates)
AddHolidayEffect <- function(y, dates, effect) {
## Adds a holiday effect to simulated data.
## Args:
## y: A zoo time series, with Dates for indices.
## dates: The dates of the holidays.
## effect: A vector of holiday effects of odd length. The central effect is
## the main holiday, with a symmetric influence window on either side.
## Returns:
## y, with the holiday effects added.
time <- dates - (length(effect) - 1) / 2
for (i in 1:length(effect)) {
y[time] <- y[time] + effect[i]
time <- time + 1
}
return(y)
}
## Define some holidays.
memorial.day <- NamedHoliday("MemorialDay")
memorial.day.effect <- c(.3, 3, .5)
memorial.day.dates <- as.Date(c("2014-05-26", "2015-05-25"))
y <- AddHolidayEffect(y, memorial.day.dates, memorial.day.effect)
presidents.day <- NamedHoliday("PresidentsDay")
presidents.day.effect <- c(.5, 2, .25)
presidents.day.dates <- as.Date(c("2014-02-17", "2015-02-16"))
y <- AddHolidayEffect(y, presidents.day.dates, presidents.day.effect)
labor.day <- NamedHoliday("LaborDay")
labor.day.effect <- c(1, 2, 1)
labor.day.dates <- as.Date(c("2014-09-01", "2015-09-07"))
y <- AddHolidayEffect(y, labor.day.dates, labor.day.effect)
## The holidays can be in any order.
holiday.list <- list(memorial.day, labor.day, presidents.day)
## In a real example you'd want more than 100 MCMC iterations.
niter <- 100
## Fit the model
ss <- AddLocalLevel(list(), y)
ss <- AddRegressionHoliday(ss, y, holiday.list = holiday.list)
model <- bsts(y, state.specification = ss, niter = niter)
## Plot all model state components.
plot(model, "comp")
## Plot the specific holiday state component.
plot(ss[[2]], model)
## Try again with some shrinkage. With only 3 holidays there won't be much
## shrinkage.
ss2 <- AddLocalLevel(list(), y)
## Plot the specific holiday state component.
ss2 <- AddHierarchicalRegressionHoliday(ss2, y, holiday.list = holiday.list)
model2 <- bsts(y, state.specification = ss2, niter = niter)
plot(model2, "comp")
plot(ss2[[2]], model2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.