Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
message = FALSE,
warning = FALSE,
comment = "#>",
fig.path = "man/figures/",
out.width = "100%")
options(tibble.print_min = 5, tibble.print_max = 5)
options(rmarkdown.html_vignette.check_title = FALSE)
## ----example4-----------------------------------------------------------------
library(bulkreadr)
library(dplyr)
top_10_richest_nig <- c("Aliko Dangote", "Mike Adenuga", "Femi Otedola", "Arthur Eze", "Abdulsamad Rabiu", "Cletus Ibeto", "Orji Uzor Kalu", "ABC Orjiakor", "Jimoh Ibrahim", "Tony Elumelu")
top_10_richest_nig %>%
pull_out(c(1, 5, 2))
## -----------------------------------------------------------------------------
top_10_richest_nig %>%
pull_out(-c(1, 5, 2))
## ----example 5----------------------------------------------------------------
## ** heterogeneous dates **
dates <- c(
44869, "22.09.2022", NA, "02/27/92", "01-19-2022",
"13-01- 2022", "2023", "2023-2", 41750.2, 41751.99,
"11 07 2023", "2023-4"
)
# Convert to POSIXct or Date object
convert_to_date(dates)
# It can also convert date time object to date object
convert_to_date(lubridate::now())
## ----example 6a---------------------------------------------------------------
# dataframe summary
inspect_na(airquality)
## -----------------------------------------------------------------------------
airquality %>%
group_by(Month) %>%
inspect_na()
## ----example 6----------------------------------------------------------------
df <- tibble::tibble(
Sepal_Length = c(5.2, 5, 5.7, NA, 6.2, 6.7, 5.5),
Sepal.Width = c(4.1, 3.6, 3, 3, 2.9, 2.5, 2.4),
Petal_Length = c(1.5, 1.4, 4.2, 1.4, NA, 5.8, 3.7),
Petal_Width = c(NA, 0.2, 1.2, 0.2, 1.3, 1.8, NA),
Species = c("setosa", NA, "versicolor", "setosa",
NA, "virginica", "setosa"
)
)
## -----------------------------------------------------------------------------
df
## -----------------------------------------------------------------------------
# Impute using the mean
result_df_mean <- fill_missing_values(df, method = "mean")
result_df_mean
## -----------------------------------------------------------------------------
result_df_geomean <- fill_missing_values(df, selected_variables = c
("Petal_Length", "Petal_Width"), method = "geometric")
result_df_geomean
## -----------------------------------------------------------------------------
# Impute using the maximum method
result_df_max <- fill_missing_values(df, selected_variables = c
(2, 3), method = "max")
result_df_geomean
## -----------------------------------------------------------------------------
sample_iris <- tibble::tibble(
Sepal_Length = c(5.2, 5, 5.7, NA, 6.2, 6.7, 5.5),
Petal_Length = c(1.5, 1.4, 4.2, 1.4, NA, 5.8, 3.7),
Petal_Width = c(0.3, 0.2, 1.2, 0.2, 1.3, 1.8, NA),
Species = c("setosa", "setosa", "versicolor", "setosa",
"virginica", "virginica", "setosa")
)
## -----------------------------------------------------------------------------
sample_iris
## -----------------------------------------------------------------------------
sample_iris %>%
group_by(Species) %>%
group_split() %>%
map_df(fill_missing_values, method = "median")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.