Nothing
test_that("bundling + unbundling keras fits", {
skip_on_cran()
skip_if_not_installed("keras")
skip_if_not_installed("butcher")
skip_if(is.null(tensorflow::tf_version()))
library(keras)
test_data <-
mtcars[26:32, 2:ncol(mtcars)] %>%
as.matrix() %>%
scale()
# define a function to fit a model -------------------------------------------
fit_model <- function() {
cars <- mtcars[1:25, ] %>%
as.matrix() %>%
scale()
x_train <- cars[, 2:ncol(cars)]
y_train <- cars[, 1]
keras_fit <-
keras_model_sequential() %>%
layer_dense(units = 1, input_shape = ncol(x_train), activation = 'linear') %>%
compile(
loss = 'mean_squared_error',
optimizer = optimizer_adam(learning_rate = .01)
)
keras_fit %>%
fit(
x = x_train, y = y_train,
epochs = 100, batch_size = 1,
verbose = 0
)
keras_fit
}
# pass fit fn to a new session, fit, bundle, return bundle -------------------
mod_bundle <-
callr::r(
function(fit_model) {
library(keras)
mod <- fit_model()
bundle::bundle(mod)
},
args = list(fit_model = fit_model)
)
# pass the bundle to a new session, unbundle it, return predictions ----------
mod_unbundled_preds <-
callr::r(
function(mod_bundle, test_data) {
library(keras)
mod_unbundled <- bundle::unbundle(mod_bundle)
predict(mod_unbundled, test_data)
},
args = list(
mod_bundle = mod_bundle,
test_data = test_data
)
)
# pass fit fn to a new session, fit, butcher, bundle, return bundle ----------
mod_butchered_bundle <-
callr::r(
function(fit_model) {
library(keras)
mod <- fit_model()
bundle::bundle(butcher::butcher(mod))
},
args = list(fit_model = fit_model)
)
# pass the bundle to a new session, unbundle it, return predictions ----------
mod_butchered_unbundled_preds <-
callr::r(
function(mod_butchered_bundle, test_data) {
library(keras)
mod_butchered_unbundled <- bundle::unbundle(mod_butchered_bundle)
predict(mod_butchered_unbundled, test_data)
},
args = list(
mod_butchered_bundle = mod_butchered_bundle,
test_data = test_data
)
)
# run expectations -----------------------------------------------------------
mod_fit <- fit_model()
mod_preds <- predict(mod_fit, test_data)
# check classes
expect_s3_class(mod_bundle, "bundled_keras")
expect_s3_class(unbundle(mod_bundle), "keras.engine.training.Model")
# ensure that the situater function didn't bring along the whole model
expect_false("x" %in% names(environment(mod_bundle$situate)))
# pass silly dots
expect_error(bundle(mod_fit, boop = "bop"), class = "rlib_error_dots")
# compare predictions
expect_equal(mod_preds, mod_unbundled_preds)
expect_equal(mod_preds, mod_butchered_unbundled_preds)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.