Nothing
## ----eval = FALSE-------------------------------------------------------------
# csem(.data = my_data, .model = my_model)
## -----------------------------------------------------------------------------
model <- "
# Structural model
EXPE ~ IMAG
# Reflective measurement model
EXPE =~ expe1 + expe2
IMAG =~ imag1 + imag2
"
## ----eval=FALSE---------------------------------------------------------------
# model <- "
# # Structural model
# EXPE ~ IMAG
# QUAL ~ EXPE
# VAL ~ EXPE + QUAL
# SAT ~ IMAG + EXPE + QUAL + VAL
# LOY ~ IMAG + SAT
#
# # Composite model
# IMAG <~ imag1 + imag2 + imag3 # composite
# EXPE <~ expe1 + expe2 + expe3 # composite
# QUAL <~ qual1 + qual2 + qual3 + qual4 + qual5 # composite
# VAL <~ val1 + val2 + val3 # composite
#
# # Reflective measurement model
# SAT =~ sat1 + sat2 + sat3 + sat4 # common factor
# LOY =~ loy1 + loy2 + loy3 + loy4 # common factor
#
# # Measurement error correlation
# sat1 ~~ sat2
# "
## -----------------------------------------------------------------------------
model <- "
# Structural model
EXPE ~ IMAG + IMAG.IMAG
# Composite model
EXPE <~ expe1 + expe2
IMAG <~ imag1 + imag2
"
## ---- eval=FALSE--------------------------------------------------------------
# model <- "
# # Structural model
# SAT ~ QUAL
# VAL ~ SAT + QUAL
#
# # Reflective measurement model
# SAT =~ sat1 + sat2
# VAL =~ val1 + val2
#
# # Composite model
# IMAG <~ imag1 + imag2
# EXPE <~ expe1 + expe2
#
# # Second-order term
# QUAL =~ IMAG + EXPE
# "
## ----warning=FALSE, message=FALSE---------------------------------------------
require(cSEM)
model <- "
# Path model / Regressions
eta2 ~ eta1
eta3 ~ eta1 + eta2
# Reflective measurement model
eta1 =~ y11 + y12 + y13
eta2 =~ y21 + y22 + y23
eta3 =~ y31 + y32 + y33
"
a <- csem(.data = threecommonfactors, .model = model)
a
## ---- eval=FALSE--------------------------------------------------------------
# csem(
# .data = threecommonfactors,
# .model = model,
# .approach_cor_robust = "none",
# .approach_nl = "sequential",
# .approach_paths = "OLS",
# .approach_weights = "PLS-PM",
# .conv_criterion = "diff_absolute",
# .disattenuate = TRUE,
# .dominant_indicators = NULL,
# .estimate_structural = TRUE,
# .id = NULL,
# .iter_max = 100,
# .normality = FALSE,
# .PLS_approach_cf = "dist_squared_euclid",
# .PLS_ignore_structural_model = FALSE,
# .PLS_modes = NULL,
# .PLS_weight_scheme_inner = "path",
# .reliabilities = NULL,
# .starting_values = NULL,
# .tolerance = 1e-05,
# .resample_method = "none",
# .resample_method2 = "none",
# .R = 499,
# .R2 = 199,
# .handle_inadmissibles = "drop",
# .user_funs = NULL,
# .eval_plan = "sequential",
# .seed = NULL,
# .sign_change_option = "no"
# )
## ----echo=FALSE, include=FALSE------------------------------------------------
x <- runif(1) # to intialize .Random.seed
## -----------------------------------------------------------------------------
b1 <- csem(.data = threecommonfactors, .model = model, .resample_method = "bootstrap")
b2 <- resamplecSEMResults(a)
## -----------------------------------------------------------------------------
summarize(b1)
## -----------------------------------------------------------------------------
ii <- infer(b1, .quantity = c("CI_standard_z", "CI_percentile"), .alpha = c(0.01, 0.05))
ii$Path_estimates
## ----eval=FALSE---------------------------------------------------------------
# b <- csem(
# .data = satisfaction,
# .model = model,
# .resample_method = "bootstrap",
# .R = 999,
# .seed = 98234,
# .eval_plan = "multiprocess")
#
# # Output omitted
## ----eval=FALSE---------------------------------------------------------------
# model <- "
# ## Structural model
# eta2 ~ eta1
#
# ## Measurement model
# eta1 <~ item1 + item2 + item3
# eta2 =~ item4 + item5 + item6
# "
#
# # Identical
# csem(threecommonfactors, model)
# csem(threecommonfactors, model, .disattenuate = TRUE)
#
# # To supress automatic disattenuation
# csem(threecommonfactors, model, .disattenuate = FALSE)
## ----eval=FALSE---------------------------------------------------------------
# model <- "
# ## Structural model
# eta2 ~ eta1
#
# ## Composite model
# eta1 <~ item1 + item2 + item3
# eta2 <~ item4 + item5 + item6
# "
#
# ### Currently the following weight approaches are implemented
# # Partial least squares path modeling (PLS)
# csem(threecommonfactors, model, .approach_weights = "PLS-PM") # default
#
# # Generalized canonical correlation analysis (Kettenring approaches)
# csem(threecommonfactors, model, .approach_weights = "SUMCORR")
# csem(threecommonfactors, model, .approach_weights = "MAXVAR")
# csem(threecommonfactors, model, .approach_weights = "SSQCORR")
# csem(threecommonfactors, model, .approach_weights = "MINVAR")
# csem(threecommonfactors, model, .approach_weights = "GENVAR")
#
# # Generalized structured component analysis (GSCA)
# csem(threecommonfactors, model, .approach_weights = "GSCA")
#
# # Principal component analysis (PCA)
# csem(threecommonfactors, model, .approach_weights = "PCA")
#
# # Factor score regression (FSR) using "unit", "bartlett" or "regression" weights
# csem(threecommonfactors, model, .approach_weights = "unit")
# csem(threecommonfactors, model, .approach_weights = "bartlett")
# csem(threecommonfactors, model, .approach_weights = "regression")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.