cSFM: Covariate-adjusted Skewed Functional Model (cSFM)

cSFM is a method to model skewed functional data when considering covariates via a copula-based approach.

AuthorMeng Li, Ana-Maria Staicu, and Howard D. Bondell
Date of publication2014-01-23 16:49:05
MaintainerMeng Li <mli9@ncsu.edu>
LicenseGPL-2
Version1.1

View on CRAN

Functions

beta2cp Man page
case2.b.initial Man page
case2.gr Man page
case2.unmll.optim Man page
cp2beta Man page
cSFM Man page
cSFM.est Man page
cSFM.est.parallel Man page
cSFM-package Man page
data.generator.y.F Man page
data.simulation Man page
DFT.basis Man page
D.gamma Man page
D.lg Man page
D.SN Man page
DST Man page
DSV Man page
fitted.cSFM Man page
g Man page
kpbb Man page
legendre.polynomials Man page
predict.cSFM Man page
predict.kpbb Man page
print.cSFM Man page
shape.dp Man page
skewness.cp Man page
uni.fpca Man page

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.