Nothing
# Extract discriminant scores for lda()
# -- just a thin wrapper on predict_discrim to provide a `scores()` method
#
# TODO: Allow function to also return the actual class of the observations
#' Extract Observation Discriminant Scores for Linear Discriminant Analysis
#'
#' This is a thin wrapper for [predict_discrim()] to provide a `scores()` method for discriminant analysis
#' from [MASS::lda()].
#'
#' @param x An object of class `"lda"` such as results from [MASS::lda()]
#' @param prior The prior probabilities of the classes. By default, taken to be the proportions in what was set
#' in the call to [MASS::lda()]
#' @param dimen The dimension of the space to be used. If this is less than the number of available dimensions,
#' \eqn{min(p, ng-1)}, only the first `dimen` discriminant components are used.
#' @param ... Unused; for compatibility with the generic
#'
#' @returns a data frame for the observations with columns `LD1`, `LD2`, ... for the discriminant dimensions
#' @author Michael Friendly
#' @seealso [predict_discrim()], [MASS::lda()]
#' @export
#'
#' @examples
#' library(MASS) # for lda()
#'
#' iris.lda <- lda(Species ~ ., iris)
#' scores(iris.lda) |>
#' str()
#'
scores.lda <- function(x,
prior = x$prior,
dimen,
...) {
scores <- predict_discrim(x,
prior = prior,
dimen = dimen,
scores = TRUE,
posterior = FALSE)
# get the LD scores
dims <- grep("LD", names(scores))
scores[, dims]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.