Nothing
glm_gaussian_data <- mock_glm_gaussian_data()
glm_binomial_data <- mock_glm_binomial_data()
cat_init_gaussian_unknown_variance <- mock_cat_glm_gaussian_initialization(glm_gaussian_data)
cat_init_binomial <- mock_cat_glm_binomial_initialization(glm_binomial_data)
chains <- 1
iter <- 100
warmup <- 50
suppressWarnings(
cat_model_gaussian_unknown <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_gaussian_unknown_variance,
chains = chains,
iter = iter,
warmup = warmup
)
)
suppressWarnings(
cat_model_binomial <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_binomial,
chains = chains,
iter = iter,
warmup = warmup
)
)
test_that("cat_glm_bayes_joint runs without errors for valid input", {
expected_components <- c(
"function_name", "formula", "cat_init", "tau_alpha", "tau_gamma",
"binomial_tau_lower", "binomial_joint_theta", "binomial_joint_alpha",
"chains", "iter", "warmup", "algorithm",
"gaussian_variance_alpha", "gaussian_variance_beta",
"stan_data", "stan_model", "stan_sample_model", "coefficients", "tau"
)
cat_model_gaussian_unknown$cat_init$adj_obs_x <- cat_model_gaussian_unknown$cat_init$adj_syn_x <- cat_model_gaussian_unknown$cat_init$adj_x <- NULL
cat_model_binomial$cat_init$adj_obs_x <- cat_model_binomial$cat_init$adj_syn_x <- cat_model_binomial$cat_init$adj_x <- NULL
expect_type(cat_model_gaussian_unknown, "list")
expect_type(cat_model_binomial, "list")
expect_equal(cat_model_gaussian_unknown$function_name, "cat_glm_bayes_joint")
expect_equal(cat_model_binomial$function_name, "cat_glm_bayes_joint")
expect_equal(cat_model_gaussian_unknown$cat_init, cat_init_gaussian_unknown_variance)
expect_equal(cat_model_binomial$cat_init, cat_init_binomial)
expect_true(all(expected_components %in% names(cat_model_gaussian_unknown)))
expect_true(all(expected_components %in% names(cat_model_binomial)))
expect_equal(cat_model_gaussian_unknown$chains, chains)
expect_equal(cat_model_binomial$chains, chains)
expect_equal(cat_model_gaussian_unknown$iter, iter)
expect_equal(cat_model_binomial$iter, iter)
expect_equal(cat_model_gaussian_unknown$warmup, warmup)
expect_equal(cat_model_binomial$warmup, warmup)
expect_true(inherits(cat_model_gaussian_unknown$stan_model, "stanmodel"))
expect_true(inherits(cat_model_binomial$stan_model, "stanmodel"))
expect_true(inherits(cat_model_gaussian_unknown$stan_sample_model, "stanfit"))
expect_true(inherits(cat_model_binomial$stan_sample_model, "stanfit"))
})
test_that("cat_glm_bayes_joint deal with known or unknown variance for Gaussian famuly properly", {
# Unkown variance
expect_contains(rownames(rstan::summary(cat_model_gaussian_unknown$stan_sample_model)$summary), "sigma")
expect_equal(cat_model_gaussian_unknown$gaussian_variance_alpha, cat_model_gaussian_unknown$stan_data$variance_alpha)
expect_equal(cat_model_gaussian_unknown$gaussian_variance_alpha, ncol(cat_init_gaussian_unknown_variance$x))
expect_equal(cat_model_gaussian_unknown$gaussian_variance_beta, cat_model_gaussian_unknown$stan_data$variance_beta)
expect_equal(cat_model_gaussian_unknown$gaussian_variance_beta, ncol(cat_init_gaussian_unknown_variance$x) * stats::var(cat_init_gaussian_unknown_variance$obs_y))
expect_null(cat_model_gaussian_unknown$stan_data$sigma)
# Known variance
cat_init_gaussian_known_variance <- mock_cat_glm_gaussian_initialization(
glm_gaussian_data,
gaussian_known_variance = TRUE
)
suppressWarnings(
cat_model_gaussian_known <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_gaussian_known_variance,
chains = chains,
iter = iter,
warmup = warmup
)
)
expect_false("sigma" %in% rownames(rstan::summary(cat_model_gaussian_known$stan_sample_model)$summary))
expect_null(cat_model_gaussian_known$gaussian_variance_alpha)
expect_null(cat_model_gaussian_known$gaussian_variance_beta)
expect_null(cat_model_gaussian_known$stan_data$variance_alpha)
expect_null(cat_model_gaussian_known$stan_data$variance_beta)
expect_false(is.null(cat_model_gaussian_known$stan_data$sigma))
# Known variance + give custom_variance
cat_init_gaussian_known_give_variance <- mock_cat_glm_gaussian_initialization(
glm_gaussian_data,
gaussian_known_variance = TRUE,
custom_variance = 1
)
suppressWarnings(
cat_model_gaussian_known_give <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_gaussian_known_give_variance,
chains = chains,
iter = iter,
warmup = warmup
)
)
expect_false("sigma" %in% rownames(rstan::summary(cat_model_gaussian_known_give$stan_sample_model)$summary))
expect_null(cat_model_gaussian_known_give$gaussian_variance_alpha)
expect_null(cat_model_gaussian_known_give$gaussian_variance_beta)
expect_null(cat_model_gaussian_known_give$stan_data$variance_alpha)
expect_null(cat_model_gaussian_known_give$stan_data$variance_beta)
expect_equal(cat_model_gaussian_known_give$stan_data$sigma, 1)
# Binomial family with known variance
expect_warning(
cat_init_binomial_known_give_variance <- mock_cat_glm_binomial_initialization(
glm_binomial_data,
gaussian_known_variance = TRUE,
custom_variance = 1
)
)
suppressWarnings(
cat_model_binomial_known_give <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_binomial_known_give_variance,
chains = chains,
iter = iter,
warmup = warmup
)
)
expect_false("sigma" %in% rownames(rstan::summary(cat_model_binomial_known_give$stan_sample_model)$summary))
expect_null(cat_model_binomial_known_give$gaussian_variance_alpha)
expect_null(cat_model_binomial_known_give$gaussian_variance_beta)
expect_null(cat_model_binomial_known_give$stan_data$variance_alpha)
expect_null(cat_model_binomial_known_give$stan_data$variance_beta)
expect_null(cat_model_binomial_known_give$stan_data$sigma)
# Binomial family with unknown variance
cat_init_binomial_unknown_variance <- mock_cat_glm_binomial_initialization(
glm_binomial_data,
gaussian_known_variance = FALSE
)
suppressWarnings(
expect_warning(
cat_model_binomial_unknown <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_binomial_unknown_variance,
chains = chains,
iter = iter,
warmup = warmup,
gaussian_variance_alpha = 1,
gaussian_variance_beta = 1
)
)
)
expect_false("sigma" %in% rownames(rstan::summary(cat_model_binomial_unknown$stan_sample_model)$summary))
expect_null(cat_model_binomial_unknown$gaussian_variance_alpha)
expect_null(cat_model_binomial_unknown$gaussian_variance_beta)
expect_null(cat_model_binomial_unknown$stan_data$variance_alpha)
expect_null(cat_model_binomial_unknown$stan_data$variance_beta)
expect_null(cat_model_binomial_unknown$stan_data$sigma)
})
test_that("cat_glm_bayes_joint deal with binomial related augments for Binomial famuly properly", {
# Test for binomial_tau_lower when family is binomial
expect_equal(cat_model_binomial$binomial_tau_lower, 0.05)
expect_equal(cat_model_binomial$binomial_tau_lower, cat_model_binomial$stan_data$tau_lower)
suppressWarnings(
cat_model_binomial_2 <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_binomial,
chains = chains,
iter = iter,
warmup = warmup,
binomial_tau_lower = 1
)
)
expect_equal(cat_model_binomial_2$binomial_tau_lower, 1)
expect_equal(cat_model_binomial_2$binomial_tau_lower, cat_model_binomial_2$stan_data$tau_lower)
# Test for binomial_tau_lower when family is gaussian
suppressWarnings(
cat_model_gau <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_gaussian_unknown_variance,
chains = chains,
iter = iter,
warmup = warmup,
binomial_tau_lower = 1
)
)
expect_null(cat_model_gau$stan_data$tau_lower)
# Test for binomial_joint_theta when family is binomial
suppressWarnings(
cat_model_binomial_theta <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_binomial,
chains = chains,
iter = iter,
warmup = warmup,
binomial_joint_theta = TRUE
)
)
expect_contains(rownames(rstan::summary(cat_model_binomial_theta$stan_sample_model)$summary), "theta")
expect_false("tau" %in% rownames(rstan::summary(cat_model_binomial_theta$stan_sample_model)$summary))
expect_equal(rstan::summary(cat_model_binomial_theta$stan_sample_model)$summary["theta", "mean"], 1 / (cat_model_binomial_theta$tau))
expect_true(cat_model_binomial_theta$binomial_joint_theta)
# Test for binomial_joint_theta when family is gaussian
expect_warning(
cat_model_gaussian_theta <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_gaussian_unknown_variance,
chains = chains,
iter = iter,
warmup = warmup,
binomial_joint_theta = TRUE
)
)
expect_contains(rownames(rstan::summary(cat_model_gaussian_theta$stan_sample_model)$summary), "tau")
expect_false("theta" %in% rownames(rstan::summary(cat_model_gaussian_theta$stan_sample_model)$summary))
expect_false(cat_model_gaussian_theta$binomial_joint_theta)
# Test for binomial_joint_alpha when family is binomial
suppressWarnings(
cat_model_binomial_theta_alpha <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_binomial,
chains = chains,
iter = iter,
warmup = warmup,
binomial_joint_theta = TRUE,
binomial_joint_alpha = TRUE
)
)
expect_contains(rownames(rstan::summary(cat_model_binomial_theta_alpha$stan_sample_model)$summary), "theta")
expect_contains(rownames(rstan::summary(cat_model_binomial_theta_alpha$stan_sample_model)$summary), "tau_alpha")
expect_equal(rstan::summary(cat_model_binomial_theta_alpha$stan_sample_model)$summary["theta", "mean"], 1 / (cat_model_binomial_theta_alpha$tau))
expect_false("tau" %in% rownames(rstan::summary(cat_model_binomial_theta_alpha$stan_sample_model)$summary))
expect_true(cat_model_binomial_theta_alpha$binomial_joint_theta)
expect_true(cat_model_binomial_theta_alpha$binomial_joint_alpha)
# Test for binomial_joint_alpha when family is binomial with binomial_joint_theta = FALSE
suppressWarnings(
expect_warning(
cat_model_binomial_alpha <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_binomial,
chains = chains,
iter = iter,
warmup = warmup,
binomial_joint_theta = FALSE,
binomial_joint_alpha = TRUE
)
)
)
expect_contains(rownames(rstan::summary(cat_model_binomial_alpha$stan_sample_model)$summary), "tau")
expect_false("tau_alpha" %in% rownames(rstan::summary(cat_model_binomial_alpha$stan_sample_model)$summary))
expect_false("theta" %in% rownames(rstan::summary(cat_model_binomial_alpha$stan_sample_model)$summary))
expect_false(cat_model_binomial_alpha$binomial_joint_theta)
expect_true(cat_model_binomial_alpha$binomial_joint_alpha)
# Test for binomial_joint_alpha when family is gaussian
expect_warning(
cat_model_gaussian_theta_alpha <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init_gaussian_unknown_variance,
chains = chains,
iter = iter,
warmup = warmup,
binomial_joint_theta = TRUE,
binomial_joint_alpha = TRUE
)
)
expect_contains(rownames(rstan::summary(cat_model_gaussian_theta_alpha$stan_sample_model)$summary), "tau")
expect_false("tau_alpha" %in% rownames(rstan::summary(cat_model_gaussian_theta_alpha$stan_sample_model)$summary))
expect_false("theta" %in% rownames(rstan::summary(cat_model_gaussian_theta_alpha$stan_sample_model)$summary))
expect_false(cat_model_gaussian_theta_alpha$binomial_joint_theta)
expect_false(cat_model_gaussian_theta_alpha$binomial_joint_alpha)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.