Man pages for causalDisco
Tools for Causal Discovery on Observational Data

adj_confusionCompute confusion matrix for comparing two adjacency matrices
as.graphNELConvert adjacency matrix to graphNEL object
average_degreeCompute average degree for adjacency matrix
compareCompare two tpdag or tskeleton objects
confusionCompute confusion matrix for comparing two adjacency matrices
corTestTest for vanishing partial correlations
dir_confusionCompute confusion matrix for comparing two adjacency matrices
edgesList of edges in adjacency matrix
essgraph2amatConvert essential graph to adjacency matrix
evaluateEvaluate adjacency matrix estimation
evaluate.arrayEvaluate adjacency matrix estimation
evaluate.matrixEvaluate adjacency matrix estimation
evaluate.tamatEvaluate adjacency matrix estimation
F1F1 score
FDRFalse Discovery Rate
FORFalse Omission Rate
G1G1 score
gausCorScoreGaussian L0 score computed on correlation matrix
graph2amatConvert graphNEL object to adjacency matrix
is_cpdagCheck for CPDAG
is_pdagCheck for PDAG
maketikzGenerate Latex tikz code for plotting a temporal DAG or PDAG.
maxnedgesCompute maximal number of edges for graph
nDAGsNumber of different DAGs
nedgesNumber of edges in adjacency matrix
NPVNegative predictive value
plot.tamatPlot adjacency matrix with order information
plotTempoMechPlot temporal data generating mechanism
plot.tpdagPlot temporal partially directed acyclic graph (TPDAG)
plot.tskeletonPlot temporal skeleton
precisionPrecision
probmat2amatConvert a matrix of probabilities into an adjacency matrix
recallRecall
regTestRegression-based information loss test
shdStructural hamming distance between adjacency matrices
simDAGSimulate a random DAG
simGausFromDAGSimulate Gaussian data according to DAG
specificitySpecificity
tamatMake a temporal adjacency matrix
tpcPerform causal discovery using the temporal PC algorithm...
tpcExampleSimulated data example
causalDisco documentation built on May 12, 2022, 9:05 a.m.