Description Usage Arguments Details Value References Examples
Density, distribution function, quantile function and random generation for
a continuous analog to the binomial distribution with parameters size
and prob
. The usage and help pages are modeled on the d-p-q-r families of
functions for the commonly-used distributions (e.g., dbinom
)
in the stats
package.
Heuristically speaking, this distribution spreads the standard probability mass
(dbinom
) at integer x
to the interval
[x, x + 1]
in a continuous manner. As a result, the distribution looks
like a smoothed version of the standard, discrete binomial but shifted slightly
to the right. The support of the continuous binomial is [0, size + 1]
,
and the mean is approximately size * prob + 1/2
.
1 2 3 4 |
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
size |
the |
prob |
the |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
The cbinom
package is an implementation of Ilienko's (2013) continuous
binomial distribution.
The continuous binomial distribution with size =
N and
prob =
p has cumulative distribution function
F(x) = B_p(x, N - x + 1)/B(x, N - x + 1)
for x
in [0, N + 1]
, where
B_p(x, N - x + 1) = integral_0^p (t^(x-1)(1-t)^(y-1))dt
is the incomplete beta function and
B(x, N - x + 1) = integral_0^1 t^(x-1)(1-t)^(y-1)dt
is the beta function (or
beta(x, N - x + 1)
in R). The CDF can be expressed in R as
F(x) = 1 - pbeta(prob, x, size - x + 1)
and the mean calculated as
integrate(function(x) pbeta(prob, x, size - x + 1), lower = 0, upper = size + 1)
.
If an element of x
is not in [0, N + 1]
, the result of
dcbinom
is zero. The PDF dcbinom(x, size, prob)
is computed via
numerical differentiation of the CDF = 1 - pbeta(prob, x, size - x + 1)
.
dcbinom
is the density, pcbinom
is the distribution function,
qcbinom
is the quantile function, and rcbinom
generates random
deviates.
The length of the result is determined by n
for rbinom
, and is the
maximum of the lengths of the numerical arguments for the other functions.
The numerical arguments other than n
are recycled to the length of the
result.
Ilienko, Andreii (2013). Continuous counterparts of Poisson and binomial distributions and their properties. Annales Univ. Sci. Budapest., Sect. Comp. 39: 137-147. http://ac.inf.elte.hu/Vol_039_2013/137_39.pdf
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | require(graphics)
# Compare continous binomial to a standard binomial
size <- 20
prob <- 0.2
x <- 0:20
xx <- seq(0, 21, length = 200)
plot(x, pbinom(x, size, prob), xlab = "x", ylab = "P(X <= x)")
lines(xx, pcbinom(xx, size, prob))
legend('bottomright', legend = c("standard binomial", "continuous binomial"),
pch = c(1, NA), lty = c(NA, 1))
mtext(side = 3, line = 1.5, text = "pcbinom resembles pbinom but continuous and shifted")
pbinom(x, size, prob) - pcbinom(x + 1, size, prob)
# Use "log = TRUE" for more accuracy in the tails and an extended range:
n <- 1000
k <- seq(0, n, by = 20)
cbind(exp(dcbinom(k, n, .481, log = TRUE)), dcbinom(k, n, .481))
|
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[,1] [,2]
[1,] 0.000000e+00 1.583005e-288
[2,] 9.419130e-246 9.419130e-246
[3,] 5.715670e-216 5.715670e-216
[4,] 6.006038e-191 6.006038e-191
[5,] 4.469776e-169 4.469776e-169
[6,] 1.353617e-149 1.353617e-149
[7,] 4.640570e-132 4.640570e-132
[8,] 3.524571e-116 3.524571e-116
[9,] 9.521109e-102 9.521109e-102
[10,] 1.298846e-88 1.298846e-88
[11,] 1.170900e-76 1.170900e-76
[12,] 8.621538e-66 8.621538e-66
[13,] 6.147479e-56 6.147479e-56
[14,] 4.877437e-47 4.877437e-47
[15,] 4.829049e-39 4.829049e-39
[16,] 6.563465e-32 6.563465e-32
[17,] 1.326321e-25 1.326321e-25
[18,] 4.260300e-20 4.260300e-20
[19,] 2.300462e-15 2.300462e-15
[20,] 2.187914e-11 2.187914e-11
[21,] 3.808997e-08 3.808997e-08
[22,] 1.252414e-05 1.252414e-05
[23,] 7.972703e-04 7.972703e-04
[24,] 1.001264e-02 1.001264e-02
[25,] 2.513686e-02 2.513686e-02
[26,] 1.271486e-02 1.271486e-02
[27,] 1.299327e-03 1.299327e-03
[28,] 2.675923e-05 2.675926e-05
[29,] 1.102228e-07 1.102451e-07
[30,] 8.963849e-11 5.551115e-11
[31,] 1.412868e-14 0.000000e+00
[32,] 4.211748e-19 0.000000e+00
[33,] 2.302143e-24 0.000000e+00
[34,] 2.221006e-30 0.000000e+00
[35,] 3.611136e-37 0.000000e+00
[36,] 9.361002e-45 0.000000e+00
[37,] 3.620812e-53 0.000000e+00
[38,] 1.930880e-62 0.000000e+00
[39,] 1.291557e-72 0.000000e+00
[40,] 9.672704e-84 0.000000e+00
[41,] 7.068202e-96 0.000000e+00
[42,] 4.258123e-109 0.000000e+00
[43,] 1.715125e-123 0.000000e+00
[44,] 3.541420e-139 0.000000e+00
[45,] 2.652905e-156 0.000000e+00
[46,] 4.524708e-175 0.000000e+00
[47,] 9.091233e-196 0.000000e+00
[48,] 7.918313e-219 0.000000e+00
[49,] 5.483576e-245 0.000000e+00
[50,] 8.301217e-276 0.000000e+00
[51,] 9.881313e-318 0.000000e+00
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.