View source: R/group_reduced_rank_regression.R
cca_group_rrr | R Documentation |
Performs group-sparse reduced-rank regression for CCA using either ADMM or CVXR solvers.
cca_group_rrr(
X,
Y,
groups,
Sx = NULL,
Sy = NULL,
Sxy = NULL,
lambda = 0,
r,
standardize = FALSE,
LW_Sy = TRUE,
solver = "ADMM",
rho = 1,
niter = 10000,
thresh = 1e-04,
thresh_0 = 1e-06,
verbose = FALSE
)
X |
Predictor matrix (n x p) |
Y |
Response matrix (n x q) |
groups |
List of index vectors defining groups of predictors |
Sx |
Optional covariance matrix for X; if NULL computed internally |
Sy |
Optional covariance matrix for Y; if NULL computed internally |
Sxy |
Optional cross covariance matrix for X and Y; if NULL computed internally |
lambda |
Regularization parameter |
r |
Target rank |
standardize |
Whether to scale variables |
LW_Sy |
Whether to apply Ledoit-Wolf shrinkage to Sy (default TRUE) |
solver |
Either "ADMM" or "CVXR" |
rho |
ADMM parameter |
niter |
Maximum number of ADMM iterations |
thresh |
Convergence threshold for ADMM |
thresh_0 |
tolerance for declaring entries non-zero |
verbose |
Print diagnostics |
A list with elements:
Canonical direction matrix for X (p x r)
Canonical direction matrix for Y (q x r)
Canonical covariances
The prediction error 1/n * \| XU - YV\|^2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.