ecca | R Documentation |
Performs group-sparse reduced-rank regression for CCA using either ADMM or CVXR solvers.
ecca(
X,
Y,
lambda = 0,
groups = NULL,
Sx = NULL,
Sy = NULL,
Sxy = NULL,
r = 2,
standardize = FALSE,
rho = 1,
B0 = NULL,
eps = 1e-04,
maxiter = 500,
verbose = TRUE
)
X |
Predictor matrix (n x p) |
Y |
Response matrix (n x q) |
lambda |
Regularization parameter |
groups |
List of index vectors defining groups of predictors |
Sx |
precomputed covariance matrix for X (optional) |
Sy |
precomputed covariance matrix for Y (optional) |
Sxy |
precomputed covariance matrix between X and Y (optional) |
r |
Target rank |
standardize |
Whether to scale variables |
rho |
ADMM parameter |
B0 |
Initial value for the coefficient matrix (optional) |
eps |
Convergence threshold for ADMM |
maxiter |
Maximum number of ADMM iterations |
verbose |
Print diagnostics |
A list with elements:
Canonical direction matrix for X (p x r)
Canonical direction matrix for Y (q x r)
Canonical covariances
The prediction error 1/n * \| XU - YV\|^2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.