Description Usage Arguments Value Author(s) References Examples
Estimate the total indirect effect (TIDE) given a correlation coefficient
| 1 | ccmm.sensitivity(rh, y, M, tr, x = NULL, w = NULL)
 | 
| rh | Correlation coefficient | 
| y | Vector of continuous outcomes | 
| M | Matrix of compositional data | 
| tr | Vector of continuous or binary treatments | 
| x | Matrix of covariates | 
| w | Vector of weights on samples | 
Estimated TIDE given a correlation coefficient
Michael B. Sohn
Maintainer: Michael B. Sohn <msohn@mail.med.upenn.edu>
Sohn, M.B. and Li, H. (2017). Compositional Mediation Analysis for Microbiome Studies (AOAS: In revision)
| 1 2 3 4 5 6 7 8 | # Load test data
data(ccmm_test_data);
outcome <- ccmm_test_data[,1];
treatment <- ccmm_test_data[,2];
mediators <- as.matrix(ccmm_test_data[,3:22]);
covariates <- as.matrix(ccmm_test_data[,23:24]);
ccmm.sensitivity(rh=0, outcome, mediators, treatment, covariates);
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.