Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(ceas)
## ----data_custom_dir, eval=FALSE----------------------------------------------
# rep_list <- list.files("seahorse_data", pattern = "*.xlsx", full.names = TRUE)
## ----data---------------------------------------------------------------------
rep_list <- system.file("extdata", package = "ceas") |>
list.files(pattern = "*.xlsx", full.names = TRUE)
raw_data <- readxl::read_excel(rep_list[1], sheet = 2)
knitr::kable(head(raw_data))
## ----read_dataformat----------------------------------------------------------
seahorse_rates <- read_data(rep_list)
knitr::kable(head(seahorse_rates))
## ----norm_csv-----------------------------------------------------------------
norm_csv <- system.file("extdata", package = "ceas") |>
list.files(pattern = "norm.csv", full.names = TRUE)
norm_csv
exp_group_norm <- norm_csv[1]
well_norm <- norm_csv[2]
read.csv(exp_group_norm) |>
knitr::kable(caption = "For normalizing by experimental group")
read.csv(well_norm) |> head() |>
knitr::kable(caption = "For normalizing by well")
## ----normalized_read----------------------------------------------------------
read_data(
rep_list,
norm = exp_group_norm,
norm_column = "exp_group",
norm_method = "self"
) |> head() |> knitr::kable()
## ----partition_data-----------------------------------------------------------
partitioned_data <- partition_data(seahorse_rates)
## ----eval = FALSE-------------------------------------------------------------
# partitioned_data <- partition_data(
# seahorse_rates,
# assay_types = list(
# basal = "MITO",
# uncoupled = "MITO",
# maxresp = "MITO",
# nonmito = "MITO",
# no_glucose_glyc = "GLYCO",
# glucose_glyc = "GLYCO",
# max_glyc = "GLYCO"
# ),
# basal_tp = 3,
# uncoupled_tp = 6,
# maxresp_tp = 8,
# nonmito_tp = 12,
# no_glucose_glyc_tp = 3,
# glucose_glyc_tp = 6,
# max_glyc_tp = 8
# )
## ----eval = FALSE-------------------------------------------------------------
# partitioned_data <- partition_data(
# seahorse_rates,
# assay_types = list(
# basal = "RefAssay",
# uncoupled = "RefAssay",
# maxresp = NA,
# nonmito = "RefAssay",
# no_glucose_glyc = "RefAssay",
# glucose_glyc = "RefAssay",
# max_glyc = NA
# ),
# basal_tp = 5,
# uncoupled_tp = 10,
# nonmito_tp = 12,
# maxresp = NA,
# no_glucose_glyc_tp = 1,
# glucose_glyc_tp = 5,
# max_glyc = NA
# )
#
## ----eval = FALSE-------------------------------------------------------------
# partitioned_data <- partition_data(
# seahorse_rates,
# assay_types = list(
# basal = "MITO",
# uncoupled = "MITO",
# maxresp = "MITO",
# nonmito = "MITO",
# no_glucose_glyc = NA,
# glucose_glyc = "MITO",
# max_glyc = NA
# ),
# basal_tp = 3,
# uncoupled_tp = 6,
# maxresp_tp = 8,
# nonmito_tp = 12,
# no_glucose_glyc_tp = NA,
# glucose_glyc_tp = 3,
# max_glyc_tp = NA
# )
## ----eval = FALSE-------------------------------------------------------------
# partitioned_data <- partition_data(
# seahorse_rates,
# assay_types = list(
# basal = "RCR",
# uncoupled = "RCR",
# maxresp = "RCR,"
# nonmito = "RCR",
# no_glucose_glyc = NA,
# glucose_glyc = "GC",
# max_glyc = "GC"
# ),
# basal_tp = 3,
# uncoupled_tp = 6,
# maxresp_tp = 8,
# nonmito_tp = 12,
# no_glucose_glyc = NA,
# glucose_glyc_tp = 3,
# max_glyc_tp = 9
# )
## ----get_energetics-----------------------------------------------------------
energetics <- get_energetics(partitioned_data, ph = 7.4, pka = 6.093, buffer = 0.10)
## ----bioscope_plot, fig.cap="Bioenergetic scope with replicates combined", out.width = "100%", fig.dim = c(5, 3), dpi = 120----
bioscope <- bioscope_plot(
energetics,
model = "ols",
sep_reps = FALSE
)
bioscope
## ----bioscope_plot_lme, fig.cap="Bioenergetic scope based on a mixed-effects model with replicates as random effect", message = FALSE, out.width = "100%", fig.dim = c(5, 3), dpi = 120----
bioscope_plot(energetics, sep_reps = FALSE, model = "mixed")
## ----bioscope_plot_sep_reps, fig.cap="Bioenergetic scope with replicates separated", out.width = "100%", fig.dim = c(5, 3), dpi = 120----
bioscope_plot(energetics, sep_reps = TRUE, model = "ols")
## ----ocr, fig.cap="OCR with replicates combined", out.width = "100%", fig.dim = c(5, 3), dpi = 120----
ocr <- rate_plot(
seahorse_rates,
measure = "OCR",
assay = "MITO",
model = "ols",
sep_reps = FALSE
)
ocr
## ----ocr_lme, fig.cap="OCR based on mixed-effects model", out.width = "100%", fig.dim = c(5, 3), dpi = 120----
rate_plot(
seahorse_rates,
measure = "OCR",
assay = "MITO",
model = "mixed",
sep_reps = FALSE
)
## ----ocr_sep_reps, fig.cap="OCR with replicates separated", out.width = "100%", fig.dim = c(5, 3), dpi = 120----
rate_plot(
seahorse_rates,
measure = "OCR",
assay = "MITO",
model = "ols",
sep_reps = TRUE,
linewidth = 1
)
## ----ecar, fig.cap="ECAR with replicates combined", out.width = "100%", fig.dim = c(5, 3), dpi = 120----
ecar <- rate_plot(
seahorse_rates,
measure = "ECAR",
assay = "GLYCO",
model = "ols",
sep_reps = FALSE
)
ecar
## ----ecar_lme, fig.cap="ECAR based on mixed-effects model", out.width = "100%", fig.dim = c(5, 3), dpi = 120----
rate_plot(
seahorse_rates,
measure = "ECAR",
assay = "GLYCO",
model = "mixed",
sep_reps = FALSE
)
## ----ecar_sep, fig.cap="ECAR with replicates separated", out.width = "100%", fig.dim = c(5, 3), dpi = 120----
rate_plot(
seahorse_rates,
measure = "ECAR",
assay = "GLYCO",
model = "ols",
sep_reps = TRUE,
linewidth = 1
)
## ----basal_glyc, fig.cap="JATP from basal glycolysis with replicates combined", out.width = "100%", fig.dim = c(5, 3), dpi = 120----
basal_glyc <- atp_plot(
energetics,
basal_vs_max = "basal",
glyc_vs_resp = "glyc",
sep_reps = FALSE
)
basal_glyc
## ----basal_resp, fig.cap="JATP from basal respiration with replicates separated", out.width = "100%", fig.dim = c(5, 3), dpi = 120----
atp_plot(
energetics,
basal_vs_max = "basal",
glyc_vs_resp = "resp",
model = "ols",
sep_reps = TRUE
)
## ----max_glyc, fig.cap="JATP from maximal glycolysis with a mixed-effects model", out.width = "100%", fig.dim = c(5, 3), dpi = 120----
atp_plot(
energetics,
basal_vs_max = "max",
glyc_vs_resp = "glyc",
model = "mixed",
sep_reps = FALSE
)
## ----max_resp, fig.cap="JATP from maximal respiration replicates combined", out.width = "100%", fig.dim = c(5, 3), dpi = 120----
atp_plot(
energetics,
basal_vs_max = "max",
glyc_vs_resp = "resp",
model = "ols",
sep_reps = TRUE
)
## ----custom_colors, out.width = "100%", fig.dim = c(5, 3), dpi = 120----------
custom_colors <- c("#e36500", "#b52356", "#3cb62d", "#328fe1")
## ----, out.width = "100%", fig.dim = c(5, 3), dpi = 120-----------------------
bioscope +
ggplot2::scale_color_manual(
values = custom_colors
)
## ----out.width = "100%", fig.dim = c(5, 3), dpi = 120-------------------------
ocr +
ggplot2::scale_color_manual(
values = custom_colors
)
## ----out.width = "100%", fig.dim = c(5, 3), dpi = 120-------------------------
ecar +
ggplot2::labs(x = "Time points")
## ----out.width = "100%", fig.dim = c(5, 3), dpi = 120-------------------------
basal_glyc +
ggplot2::theme(axis.text = ggplot2::element_text(size = 20))
## ----eval = FALSE-------------------------------------------------------------
# rate_plot
## ----results = 'asis', echo = FALSE-------------------------------------------
func_code <- capture.output(dput(rate_plot))
cat("```r\n")
cat(func_code, sep = "\n")
cat("\n```")
## ----eval = FALSE-------------------------------------------------------------
# edit(rate_plot)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.