Nothing
#' Family life states from the Swiss Household Panel biographical survey
#'
#' 2000 16 year-long family life sequences built from the retrospective biographical survey carried out by the Swiss
#' Household Panel (SHP) in 2002. Data from \code{TraMineR} package.
#'
#' @name biofam2
#' @aliases biofam2
#' @docType data
#' @keywords data
#'
#' @usage data(biofam2)
#'
#' @format A data.frame containing three columns:
#' \itemize{
#' \item \emph{id} id of individuals (2000 different ids)
#' \item \emph{time} age in years where a change occurs
#' \item \emph{state} new state.
#' }
#'
#'
#' @details
#' The biofam2 dataset derives from the biofam dataset from \code{TraMineR} package.
#' The biofam2 format is adapted to \code{cfda} functions.
#' The biofam data set was constructed by Müller et al. (2007) from the data of the retrospective biographical survey
#' carried out by the Swiss Household Panel (SHP) in 2002.
#' The data set contains sequences of family life states from age 15 to 30 (sequence length is 16).
#' The sequences are a sample of 2000 sequences of those created from the SHP biographical survey.
#' It includes only individuals who were at least 30 years old at the time of the survey.
#' The biofam data set describes family life courses of 2000 individuals born between 1909 and 1972.
#'
#' The eight states are defined from the combination of five basic states, namely Living with parents (Parent),
#' Left home (Left), Married (Marr), Having Children (Child), Divorced:
#' "Parent", "Left", "Married", "Left+Marr", "Child", "Left+Child", "Left+Marr+Child", "Divorced"
#'
#' @source Swiss Household Panel https://forscenter.ch/projects/swiss-household-panel/
#'
#' @references Müller, N. S., M. Studer, G. Ritschard (2007). Classification de parcours de vie à l'aide de l'optimal matching.
#' In XIVe Rencontre de la Société francophone de classification (SFC 2007), Paris, 5 - 7 septembre 2007, pp. 157–160.
#'
#' @examples
#' data(biofam2)
#' head(biofam2)
#'
#' plotData(biofam2)
#'
#' \donttest{
#' # It is recommended to increase the number of cores to reduce computation time
#' set.seed(42)
#' basis <- create.bspline.basis(c(15, 30), nbasis = 4, norder = 4)
#' fmca <- compute_optimal_encoding(biofam2, basis, nCores = 2)
#'
#' plot(fmca, harm = 1)
#' plot(fmca, harm = 2)
#' plotEigenvalues(fmca, cumulative = TRUE, normalize = TRUE)
#' plotComponent(fmca, comp = c(1, 2), addNames = FALSE)
#' }
#' @family datasets
NULL
#' Care trajectories
#'
#' Care trajectories of patients diagnosed with a serious and chronic condition
#'
#' @name care
#' @aliases care
#' @docType data
#' @keywords data
#'
#' @usage data(care)
#'
#' @format A data.frame containing three columns:
#' \itemize{
#' \item \emph{id} id of individuals (2929 different ids)
#' \item \emph{time} number of months since the diagnosis
#' \item \emph{state} new state.
#' }
#'
#'
#' @details
#' In this study, patients were followed from the time they were diagnosed with a serious and chronic condition
#' and their care trajectories were tracked monthly from the time of diagnosis.
#' The status variable contains the care status of each individual for each month of follow-up.
#' Trajectories have different lengths.
#'
#' The four states are:
#' \itemize{
#' \item{D: diagnosed, but not in care}
#' \item{C: in care, but not on treatment}
#' \item{T: on treatment, but infection not suppressed}
#' \item{S: on treatment and suppressed infection}
#' }
#'
#' @source https://larmarange.github.io/analyse-R/data/care_trajectories.RData
#' https://larmarange.github.io/analyse-R/trajectoires-de-soins.html
#'
#'
#' @examples
#' data(care)
#' head(care)
#'
#' plotData(care)
#'
#' # Individuals has not the same length. In order to compute the encoding,
#' # we keep individuals with at least 18 months of history and work
#' # with the 18 first months.
#' duration <- compute_duration(care)
#' idToKeep <- as.numeric(names(duration[duration >= 18]))
#' care2 <- cut_data(care[care$id %in% idToKeep, ], 18)
#' head(care2)
#' \donttest{
#' # It is recommended to increase the number of cores to reduce computation time
#' set.seed(42)
#' basis <- create.bspline.basis(c(0, 18), nbasis = 10, norder = 4)
#' fmca <- compute_optimal_encoding(care2, basis, nCores = 2)
#'
#' plotEigenvalues(fmca, cumulative = TRUE, normalize = TRUE)
#' plot(fmca)
#' plot(fmca, addCI = TRUE)
#' plotComponent(fmca, addNames = FALSE)
#' }
#' @family datasets
NULL
#' Flours dataset
#'
#' Resistance of dough during the kneading process
#'
#' @name flours
#' @aliases flours
#' @docType data
#' @keywords data
#'
#' @usage data(flours)
#'
#' @format \code{flours} is a list of 3 elements:
#' \itemize{
#' \item \code{data} A matrix of size 241*115 containing the resistance of dough (measured every 2s) during the kneading
#' process. One dough batch = 1 column
#' \item \code{quality} Quality of cookies baked with the associated dough (1=Good, 2=Medium, 3=Bad)
#' \item \code{time} time values
#' }
#'
#' @examples
#' data(flours)
#'
#' matplot(flours$time, flours$data, col = flours$quality, type = "l", lty = 1)
#'
#' # convert to categorical data
#' flours_cfd <- convertToCfd(flours$data,
#' breaks = c(-Inf, 150, 300, 450, 600, Inf),
#' times = flours$time
#' )
#'
#' plotData(flours_cfd, group = flours$quality)
#'
#'
#' # convert to categorical data after projecting in a basis of functions
#' basis <- create.bspline.basis(c(0, 480), nbasis = 10)
#' flours_fd <- Data2fd(flours$time, flours$data, basis)
#' plot(flours_fd)
#'
#' flours_cfd2 <- convertToCfd(flours_fd, breaks = c(-Inf, 150, 300, 450, 600, Inf))
#'
#' plotData(flours_cfd2, group = flours$quality)
#' @family datasets
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.